synthetic jet actuators
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 18)

H-INDEX

24
(FIVE YEARS 2)

Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 208
Author(s):  
Emil Smyk ◽  
Robert Smusz

In the paper, the impact of the limitation of the environment around the office of synthetic jet actuators were tested. One short and three length orifices were tested and compared with and without confinement plate. In total, seven different synthetic jet actuators were investigated. The constant temperature anemometer was used for the velocity measurements. The synthetic jet was tested for the Reynolds number in the range of 2300 < Re < 19,500, and the Stokes number in the range of 46 < S < 62. The confinement plate decreased the velocity of synthetic jet depending on the actuator supply power even around 5%. However, the differences in axial velocity profile are slight and the impact of the confinement plate was visible only in the distance x/d < 4.


2021 ◽  
Vol 263 (2) ◽  
pp. 4823-4831
Author(s):  
Song Wang ◽  
Rayane Ait Oubahou ◽  
Zixin He ◽  
Anthony Mickalauskas ◽  
David Menicovich ◽  
...  

Piezoelectrically driven synthetic jet actuators (SJA) are useful in various applications such as flow control, heat transfer and camera lens cleaning. This paper aims to better understand the fundamental sound generation mechanisms of synthetic jet actuators and investigate methods for the noise reduction and vibration control. The SJAs tested in this paper are driven by sinusoidal signals at frequencies ranging between 100 and 600 Hz, and can produce pulsated air jets at high velocity, up to 100 m/s. The sound generated by these devices, generally tonal and rich in harmonics, was modeled as the superposition of two monopoles associated with the breathing mode of the diaphragm and of the pulsated jet. Component analyses showed that the two monopoles cancelled each other partially depending on their amplitudes and phase relationship. A computational aeroacoustic model of the SJAs was built using PowerFLOW, a computation fluid dynamic simulation software. Simulation results were compared with jet velocities measured with a hot-wire anemometer and flow patterns were analyzed. Active and passive control methods were investigated, and a sound quality analysis was performed in order to reduce the overall radiated sound power and improve sound quality.


2021 ◽  
Vol 11 (12) ◽  
pp. 5666
Author(s):  
Paweł Gil ◽  
Joanna Wilk ◽  
Michał Korzeniowski

This paper presents the results of experimental investigations of 108 geometrical configurations of a loudspeaker-driven synthetic jet (SJ) actuator. The considered cases of the SJ actuator were characterized by a high coupling ratio. The experiment was performed to determine the impact of geometry on the Helmholtz resonance frequency. Geometrical parameters of the orifice diameter, orifice length, and cavity volume were changed within a wide range. The dependences of electrical and flow parameters that characterized the synthetic jet actuators as a function of the excitation frequency were also identified. The main goal of the research was to identify the optimal mathematical formula of the model to calculate the Helmholtz resonance frequency in the case of synthetic jet actuators. To determine the model that was characterized by the best fit of the experimental results, an additional geometrical dimensionless parameter, representing the ratio of the orifice cross-section area to the cross-section area of the cavity, was introduced. A significant impact of this parameter on the effective orifice length was noted. Based on the research findings, a model was obtained for which the results of the experiment were in the error range of ±6% for 95% of the measurement data. The obtained model is an improved version of the classical model used in the description of the resonance frequency in the case of a synthetic jet actuator. The model enables highly accurate determination of the Helmholtz resonance frequency at which the maximum synthetic jet actuator parameters occur.


2021 ◽  
Vol 11 (10) ◽  
pp. 4600
Author(s):  
Emil Smyk ◽  
Joanna Wilk ◽  
Marek Markowicz

In this paper, synthetic jet actuators (SJAs) with three different orifice shapes (circular, square, and slot) with the same cross-section area were investigated. The SJA efficiency and the synthetic jet (SJ) Reynolds number were calculated based on the time-mean reaction force measurement. The momentum velocity was measured with hot-wire anemometry and additionally, the sound pressure level (SPL) was measured. The efficiency was equal maximally to 5.3% for each orifice shape, but the square orifice characterized the higher Reynolds number. The compared centerline (axial) velocities and the radial velocity profile at a distance of 112 mm were similar for each orifice type. The SPL measurement results were surprisingly constant in relation to each other. The square orifice generates the lowest SPL, approximately 2.8dB lower than the circular orifice, and approximately 4.2dB lower than the slot orifice, at each investigated real power. Finally, the differences to other papers and limitations of the approach to comparing orifices presented in the present paper were indicated.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Itimad D. J. Azzawi ◽  
Artur J. Jaworski ◽  
Xiaoan Mao

Abstract There is generally limited guidance available on the optimum clamping method for the diaphragms used in the synthetic jet actuators (SJAs). This paper describes the effects of clamping methods (O-rings, neoprene rubber washers and metal-to-metal clamping) on the actuator diaphragm displacement using Polytec scan vibrometer (PSV). Once the clamping type was implemented, an optimization study to examine the effect of geometrical parameters for three designs of synthetic jet actuators in quiescent conditions—in particular the number of orifices per cavity, the space between them, and their effects on the jet velocity—was performed. It has also been shown that with use the Helmholtz resonance of the cavity and amplitude modulation of the excitation signal, the actuator can exhibit a more significant “blowing” velocity at a reduced power input.


Sign in / Sign up

Export Citation Format

Share Document