CNN-LSTM based reduced order modeling of two-dimensional unsteady flows around a circular cylinder at different Reynolds numbers

2020 ◽  
Vol 52 (6) ◽  
pp. 065501
Author(s):  
Kazuto Hasegawa ◽  
Kai Fukami ◽  
Takaaki Murata ◽  
Koji Fukagata
2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


Author(s):  
Jian-Jun Shu

A number of new closed-form fundamental solutions for the two-dimensional generalized unsteady Oseen and Stokes flows associated with arbitrary time-dependent translational and rotational motions have been developed. As an example of application, the hydrodynamic force acting on a circular cylinder translating in an unsteady flow field at low Reynolds numbers is calculated using the new generalized fundamental solutions.


1977 ◽  
Vol 79 (3) ◽  
pp. 609-624 ◽  
Author(s):  
R. D. Mills

Steady two-dimensional viscous motion within a circular cylinder generated by (a) the rotation of part of the cylinder wall and (b) fluid entering and leaving through slots in the wall is considered. Studied in particular are moving-surface problems with continuous and discontinuous surface speeds, simple inflow–outflow problems and the impinging-jet problem within a circle. The analytical solutions at zero Reynolds number are given for the last two types of problem. Numerical results are obtained at various Reynolds numbers from the integral representation of the solution. At zero Reynolds number this approach involves a quadrature around the circumference of the cylinder. At other Reynolds numbers it involves an iterative–integral technique based on the use of the ‘clamped-plate’ biharmonic Green's function.


2007 ◽  
Vol 570 ◽  
pp. 177-215 ◽  
Author(s):  
SALEM BOUHAIRIE ◽  
VINCENT H. CHU

The heat transfer from the surface of a circular cylinder into a crossflow has been computed using a two-dimensional model, for a range of Reynolds numbers from Re=200 to 15550. The boundary-layer separation, the local and overall heat-transfer rates, the eddy- and flare-detachment frequencies and the width of the flares were determined from the numerical simulations. In this range of Reynolds numbers, the heat-transfer process is unsteady and is characterized by a viscous length scale that is inversely proportional to the square root of the Reynolds number. To ensure uniform numerical accuracy for all Reynolds numbers, the dimensions of the computational mesh were selected in proportion to this viscous length scale. The small scales were resolved by at least three nodes within the boundary layers. The frequency of the heat flares increases, and the width of each flare decreases, with the Reynolds number, in proportion to the viscous time and length scales. Despite the presence of three-dimensional structures for the range of Reynolds numbers considered, the two-dimensional model captures the unsteady processes and produced results that were consistent with the available experimental data. It correctly simulated the overall, the front-stagnation and the back-to-total heat-transfer rates.


Sign in / Sign up

Export Citation Format

Share Document