Volume 7B: Ocean Engineering
Latest Publications


TOTAL DOCUMENTS

57
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857748

Author(s):  
Erin E. Bachynski ◽  
Trygve Kristiansen

Monopile support structures for offshore wind turbines may experience ringing-type responses in steep wave conditions. In order to experimentally capture the statistical distribution of the hydrodynamic loads and structural responses, traditional practice is to generate many 3-hour (full scale) realizations of the relevant sea states. An experimental campaign at 1:48 scale was carried out in the Lilletanken wave tank at NTNU/MARINTEK in order to examine the possibility of using shorter time windows to recreate irregular wave ringing events. Wave elevations and hydrodynamic loads on a rigid vertical circular cylinder in 27 m water depth were measured for a variety of 3-hour, 450 s (7.5-minute), 800 s (13.3-minute), 1150 s (19.2-minute), and 1500 s (25-minute) wave realizations, where all durations are listed in full scale. Wavelet transformations and a single degree-of-freedom oscillator were used to investigate the magnitude and repeatability of the high-frequency content of the wave loads. Large variations in the repeatability were seen among events. On average, the repeatability in the ringing response was 4.2 % for 3-hour tests, while 13.3-minute tests reproduced the same events within 9.1 %. The maximum deviation was, nonetheless, much higher when only 13.3 minutes were used.


Author(s):  
Bastien Abeil

Model tests of a drillship with a rectangular moonpool opening were conducted in regular and irregular waves from the bow and bow-quarter. Most tests were conducted at zero speed, the rest was performed with the model towed to a speed of 10 kn. From the video-recordings and transfer functions of the measured relative water elevation inside the moonpool, the typical piston and first sloshing modes are well captured, for wave frequencies that agree relatively well with relevant formulations. A few tests conducted at varying wave amplitudes show that the water elevation is non-linear by nature, while repeat tests conducted with the moonpool fitted with two layers of side wall flanges shows that these can reduce the water motions by nearly 40 %.


Author(s):  
Xu Xiang ◽  
Erik Svangstu ◽  
Øyvind Nedrebø ◽  
Bernt Jakobsen ◽  
Mathias Egeland Eidem ◽  
...  

The current floating bridge concepts of Norwegian Public Roads Administration (Statens vegvesen, NPRA) use a flange shape part at the bottom part of the pontoons. The flange is in principle similar to the damping plates used in the offshore industry for SPAR type of structures. The project group initiated the flange part based on the requirement of extra added mass for tuning the bridge system Eigen-modes. Thus, the important modes can be shifted out of the main wave energy zone. The current study will focus on the damping effects of such structure. The damping effects on weak axis bending moment prediction is studied. The modelling of such damping is first proposed according to relevant literature based on both numerical and experimental studies. Since the reference studies were mainly focused on cylindrical structures, it is difficult to obtain an accurate estimation of the damping coefficient for the current bridge pontoon design, which contains a rectangular part between two half-cylindrical parts. In addition, the estimation of pontoon motions needs the input of damping coefficient, which means that the evaluation of damping coefficient is an iteration process. In order to include the uncertainties, a conservative value was adopted to represent the damping effect. The comparison of accounting for the damping effects or not has been given for all the bridge pontoons. The results show that the damping effects are important at the peaks of the responses; in addition, the reduction of the predicted maximum bending moments can be expected around 10–15 percent along different positions of the bridge. However, a further investigation also shows that viscous excitation would increase the bending moments slightly. The comparison also indicates the value of further investigating the effects by CFD or model test methods.


Author(s):  
Yazhen Du ◽  
Wenhua Wang ◽  
Linlin Wang ◽  
Yi Huang

In order to fully exploit the potential of FPSOs in the development of offshore oil field, a new concept of sandglass-type FPSO has been put forward recently. In this paper, a novel approach is proposed for designing the main dimensions of the new sandglass-type floating body. With the application of the strip method, the wave-free frequency in heave motion is intensively investigated. The resulting expression shows that the wave-free frequency has close connection with the water-plane area and the corresponding added mass. Then a uniform approximation of the relationship between the added mass and the main dimensions of structure below the waterline is discussed. By comparing with the numerical results of minimum heave RAO of heave motion, the validity and rationality of the proposed method are verified. Besides, experiments are carried out for the sandglass-type floating model and the results support the numerical results and the proposed method. Finally, combining with other requirements in the configuration of the structure above the waterline for the operation at sea, the design scheme for the main dimensions of the sandglass-type FPSO is established.


Author(s):  
Adil Rasheed ◽  
Jakob Kristoffer Süld ◽  
Mandar Tabib

Accurate prediction of near surface wind and wave height are important for many offshore activities like fishing, boating, surfing, installation and maintenance of marine structures. The current work investigates the use of different methodologies to make accurate predictions of significant wave height and local wind. The methodology consists of coupling an atmospheric code HARMONIE and a wave model WAM. Two different kinds of coupling methodologies: unidirectional and bidirectional coupling are tested. While in Unidirectional coupling only the effects of atmosphere on ocean surface are taken into account, in bidirectional coupling the effects of ocean surface on the atmosphere are also accounted for. The predicted values of wave height and local wind at 10m above the ocean surface using both the methodologies are compared against observation data. The results show that during windy conditions, a bidirectional coupling methodology has better prediction capability.


Author(s):  
Lokukaluge P. Perera ◽  
Brage Mo ◽  
Matthias P. Nowak

Ship performance and navigation data are collected by vessels that are equipped with various supervisory control and data acquisition systems (SCADA). Such information is collected as large-scale data sets, therefore various analysis tools and techniques are required to extract useful information from the same. The extracted information on ship performance and navigation conditions can be used to implement energy efficiency and emission control applications (i.e. weather routing type applications) on these vessels. Hence, this study proposes to develop data visualizing methods in order to extract ship performance and navigation information from the respective data sets in relation to weather conditions. The relative wind (i.e. apparent wind) profile (i.e. wind speed and direction) collected by onboard sensors and absolute weather conditions, which are extracted from external data sources by using position and time information a selected vessel (i.e. from the recorded ship routes), are considered. Hence, the relative wind profile of the vessel is compared with actual weather conditions to visualize ship performance and navigation parameters relationships, as the main contribution. It is believed that such relationships can be used to develop appropriate mathematical models to predict ship performance and navigation conditions under various weather conditions.


Author(s):  
Jian-Jun Shu

A number of new closed-form fundamental solutions for the two-dimensional generalized unsteady Oseen and Stokes flows associated with arbitrary time-dependent translational and rotational motions have been developed. As an example of application, the hydrodynamic force acting on a circular cylinder translating in an unsteady flow field at low Reynolds numbers is calculated using the new generalized fundamental solutions.


Author(s):  
Helong Wang ◽  
Wengang Mao ◽  
Leif Eriksson

Safety and energy efficiency are two of the key issues in the maritime transport community. A sail plan system, which combines the concepts of weather routing and voyage optimization, are recognized by the shipping industry as an efficient measure to ensure a ship’s safety, gain more economic benefit, and reduce negative effects on our environment. In such a system, the key component is to develop a proper optimization algorithm to generate potential ship routes between a ship’s departure and destination. In the weather routing market, four routing optimization algorithms are commonly used. They are the so-called modified Isochrone and Isopone methods, dynamic programming, threedimensional dynamic programming, and Dijkstra’s algorithm, respectively. Each optimization algorithm has its own advantages and disadvantages to estimate a ship routing with shortest sailing time or/and minimum fuel consumption. This paper will present a benchmark study that compare these algorithms for routing optimization aiming at minimum fuel consumption. A merchant ship sailing in the North Atlantic with full-scale performance measurements, are employed as the case study vessels for the comparison. The ship’s speed/power performance is based on the ISO2015 methods combined with the measurement data. It is expected to demonstrate the pros and cons of different algorithms for the ship’s sail planning.


Author(s):  
Lokukaluge P. Perera ◽  
Brage Mo

Ocean internet of things (IoT - onboard and onshore) collects big data sets of ship performance and navigation information under various data handling processes. That extract vessel performance and navigation information that are used for ship energy efficiency and emission control applications. However, the quality of ship performance and navigation data can play an important role in such applications, where sensor faults may introduce various erroneous data regions and that may degrade to the outcome. This study proposes visual analytics, where hidden data patterns, clusters, correlations and other useful information are visually from the respective data set extracted, to identify such erroneous data regions. The domain knowledge (i.e. ship performance and navigation conditions) has also been used to interpret such erroneous data regions and identify the respective sensors that relate to the same situations. Finally, a ship performance and navigation data set of a selected vessel is analyzed to identify erroneous data regions for three selected sensor fault situations (i.e. wind, log speed and draft sensors) under the proposed visual analytics. Hence, this approach can be categorized as a sensor specific fault detection methodology by considering the same results.


Author(s):  
Chen Chen ◽  
Masashi Kashiwagi

As a strong western-boundary current, the Kuroshio Current has significant effects on the ship navigation in the East China Sea (ECS). To quantitatively know more about its influence, we present simulations of the ocean current in the North Pacific Ocean using the well-known Princeton Ocean Model (POM). The high-resolution current distributions could be applied to conduct numerical simulations of the ship navigation, which utilized a ship maneuvering model known as the Mathematical Maneuvering Group (MMG). Calculation of a container ship as well as a training ship have been conducted. The simulation results of both ships can show the significant effects of ocean currents on ship’s drifting as well as speed change, which could be used to optimize cost of both fuel and time by properly utilizing the current in ship routing.


Sign in / Sign up

Export Citation Format

Share Document