Two-Dimensional Unsteady Viscous Flows

Author(s):  
Jian-Jun Shu

A number of new closed-form fundamental solutions for the two-dimensional generalized unsteady Oseen and Stokes flows associated with arbitrary time-dependent translational and rotational motions have been developed. As an example of application, the hydrodynamic force acting on a circular cylinder translating in an unsteady flow field at low Reynolds numbers is calculated using the new generalized fundamental solutions.

1998 ◽  
Vol 09 (08) ◽  
pp. 1129-1141 ◽  
Author(s):  
J. Bernsdorf ◽  
Th. Zeiser ◽  
G. Brenner ◽  
F. Durst

Results for time-dependent, viscous, incompressible flows were investigated using the lattice-Boltzmann (BGK) automata. The decay of a synthetic turbulent flow field and the time evolution of an initial vortex were simulated for validation purposes. The focal point was the investigation of the instationary flow around a square obstacle in a two-dimensional channel for a range of Reynolds numbers between 80 and 300 and a blockage ratio of 0.125. The Strouhal number was measured for this case and found to be in the range of data given in the literature.


2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


2013 ◽  
Vol 730 ◽  
pp. 145-161 ◽  
Author(s):  
Qiqi Wang ◽  
Jun-Hui Gao

AbstractThis paper analyses the adjoint solution of the Navier–Stokes equation. We focus on flow across a circular cylinder at three Reynolds numbers, ${\mathit{Re}}_{D} = 20, 100$ and $500$. The quantity of interest in the adjoint formulation is the drag on the cylinder. We use classical fluid mechanics approaches to analyse the adjoint solution, which is a vector field similar to a flow field. Production and dissipation of kinetic energy of the adjoint field is discussed. We also derive the evolution of circulation of the adjoint field along a closed material contour. These analytical results are used to explain three numerical solutions of the adjoint equations presented in this paper. The adjoint solution at ${\mathit{Re}}_{D} = 20$, a viscous steady state flow, exhibits a downstream suction and an upstream jet, the opposite of the expected behaviour of a flow field. The adjoint solution at ${\mathit{Re}}_{D} = 100$, a periodic two-dimensional unsteady flow, exhibits periodic, bean-shaped circulation in the near-wake region. The adjoint solution at ${\mathit{Re}}_{D} = 500$, a turbulent three-dimensional unsteady flow, has complex dynamics created by the shear layer in the near wake. The magnitude of the adjoint solution increases exponentially at the rate of the first Lyapunov exponent. These numerical results correlate well with the theoretical analysis presented in this paper.


Author(s):  
Sina Pooladsanj ◽  
Mehran Tadjfar

A numerical study has been performed to evaluate the aerodynamics coefficients of a winglet in the range of Reynolds numbers below 30,000. In this study some parameters on winglet design have been considered. The effect of winglet-tip airfoil thickness has been investigated on aerodynamics coefficients. In order to explore this effect, two different airfoils (NACA0002 and NACA0012) were employed at the winglet-tip. The influence of varying the winglet connection angle to the wing on aerodynamics coefficients and flow field characteristics in the vortex flow zone such as; circulation magnitude and vorticity magnitude in the vortex core have been studied. Six connection angles including 20°, 30°, 40°, 50°, 60° and 70° have been studied. Negative values of these angles have also been considered. In addition, the effect of changing wing aspect ratio on aerodynamics coefficients has been investigated. To solve the flow field around the studied geometry a fully structured grid was used which consists of 84 blocks.


Sign in / Sign up

Export Citation Format

Share Document