Narrowband-to-broadband switchable and polarization-insensitive terahertz metasurface absorber enabled by phase-change material

2021 ◽  
Author(s):  
Seyed Hadi Badri ◽  
M. M. Gilarlue ◽  
Sanam SaeidNahaei ◽  
Jong Su KIM

Abstract A terahertz absorber with controllable and switchable bandwidth and insensitive to polarization is of great interest. Here, we propose and demonstrate a metasurface absorber with switchable bandwidth based on a phase-change material of vanadium dioxide (VO2) and verify its performance by the finite element method simulations. The metasurface absorber is composed of a hybrid cross fractal as a resonator separated from a gold ground-plane by a polyimide spacer. Switching from narrowband to broadband absorber is achieved via connecting VO2 patches to the gold first-order cross fractal converting the resonator to a third-order cross fractal. In the insulator phase of VO2, the main narrowband absorption occurs at the frequency of 6.05 THz with a 0.99 absorption and a full-width half-maximum (FWHM) of 0.35 THz. Upon insulator-to-metal transition of VO2, the metasurface achieves a broadband absorption with the FWHM of 6.17 THz. The simulations indicate that by controlling the partial phase-transition of VO2, we can tune the bandwidth and absorption level of the absorber. Moreover, the designed absorber is insensitive to polarization due to symmetry and works well for a very wide range of incident angles. In the metallic state of VO2, the absorber has an absorption exceeding 0.5 in the 3.57-8.45 THz frequency range with incident angles up to 65°.

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hassan Divdel ◽  
Hamed Taghipour-Farshi ◽  
Hassan Rasooli Saghai ◽  
Mohammad-Ali Tavakoli Ghazi Jahani

Abstract A terahertz metasurface absorber with actively switchable bandwidth enabled by vanadium dioxide (VO2) is presented and investigated numerically. The VO2 is a phase-change material and its conductivity in the terahertz range changes by several orders of magnitude upon phase-transition. The metasurface consists of an H-shaped fractal resonator placed on top of a polyimide spacer and a ground-plane of gold. The resonator is composed of an H-shaped level-1 fractal of gold and VO2 strips that converts it to a level-2 fractal. At room temperatures, the VO2 is in the insulator state and the resonator reduces to a level-1 fractal offering narrowband absorption at 8.08 THz reaching 0.98 absorption. At higher temperatures, the VO2 is in the metallic state and the resonator is effectively a level-2 fractal with an absorption higher than 0.9 in a bandwidth of 6.63–9.89 THz.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1135 ◽  
Author(s):  
Ning Xu ◽  
Yaoyao Liang ◽  
Yuan Hao ◽  
Min Mao ◽  
Jianping Guo ◽  
...  

Multifunctional metasurfaces play an important role in the development of integrated optical paths. However, some of the realizations of current multifunctional metasurface devices depend on polarization selectivity, and others change the polarization state of the outgoing light. Here, based on vanadium dioxide (VO2) phase change material, a strategy to design a meta-duplex-lens (MDL) is proposed and numerical simulation calculations demonstrate that at low temperature (about 300 K), VO2 behaves as a dielectric so that the MDL can act as a transmission lens (transmission efficiency of 87.6%). Conversely, when VO2 enters the metallic state (about 355 K), the MDL has the ability to reflect and polymerize electromagnetic waves and works as a reflection lens (reflection efficiency of 85.1%). The dielectric waveguide and gap-surface plasmon (GSP) theories are used in transmission and reflection directions, respectively. In order to satisfy the coverage of the phase gradient in the range of 2π in both cases, we set the antenna as a nanopillar with a high aspect ratio. It is notable that, via symmetrical antennas acting in concert with VO2 phase change material, the polarization states of both the incident light and the outgoing light are not changed. This reversible tuning will play a significant role in the fields of imaging, optical storage devices, communication, sensors, etc.


2014 ◽  
Vol 1077 ◽  
pp. 118-123 ◽  
Author(s):  
Lubomír Klimeš ◽  
Pavel Charvát ◽  
Milan Ostrý ◽  
Josef Stetina

Phase change materials have a wide range of application including thermal energy storage in building structures, solar air collectors, heat storage units and exchangers. Such applications often utilize a commercially produced phase change material enclosed in a thin panel (container) made of aluminum. A parallel 1D heat transfer model of a container with phase change material was developed by means of the control volume and effective heat capacity methods. The parallel implementation in the CUDA computing architecture allows the model for running on graphics processing units which makes the model very fast in comparison to traditional models computed on a single CPU. The paper presents the model implementation and results of computational model benchmarking carried out with the use of high-level and low-level GPUs NVIDIA.


2021 ◽  
Vol 25 (1) ◽  
pp. 455-466
Author(s):  
Janis Narbuts ◽  
Ruta Vanaga ◽  
Ritvars Freimanis ◽  
Andra Blumberga

Abstract Buildings are linked to a significant untapped energy saving potential, accounting for 40 % of European Union’s (EU) final energy and 36 % of CO2 emissions. Energy efficient building envelopes plays the key role to achieve decarbonization of the EU’s building stock by 2050. Active building envelopes are emerging and novel trend offering the paradigm shift in perception of building enclosures. Paper presents study of active solar façade containing phase change material for energy storage. Study seeks for optimisation of solar façade module by introducing dynamic component and variating in the composition of module itself to ensure faster energy harvesting and minimise the heat losses at discharging phase. Comparative tests were carried out in laboratory, in controlled heating and cooling conditions to evaluate impact of dynamic component. The dynamic component has reflective inner coating that focuses solar radiation on the element in heating phase and aerogel insulation filling in the blades that decreases heat loss in the cooling phase. Varying components in the design were used– thickness of aerogel insulation, Fresnel lens and width of concentrating cone diameter. Wide range of phase change material average temperature was observed 24 °C in setups with full aerogel filling to 50 °C in setup Fresnel lens. Average temperature in phase change material was reached higher in all setups with dynamic component compared to identical setups without dynamic component. Temperature differences were in the range from 1 °C in aerogel filled setups till 6 °C in setups with Fresnel lens.


1999 ◽  
Vol 121 (3) ◽  
pp. 145-149 ◽  
Author(s):  
Zhu Yingqiu ◽  
Zhang Yinping ◽  
Jiang Yi ◽  
Kang Yanbing

A theoretical model is developed to analyze the thermal storage and heat transfer characteristics in a phase change material outside a circular tube with heat transfer fluid inside the tube. A new method, the alternative iteration between temperature and thermal resistance method, is presented to analyze the variation of the phase change radius, the axial temperature variation in the heat transfer fluid and the thermal storage in the circular tube. Dimensionless formulae are developed using theoretical and numerical analysis. The present solutions agree well with those in the literature. The dimensionless correlations are not limited to one condition, so they provide a basis for tube heat transfer design and optimization over a wide range of conditions.


2018 ◽  
Vol 49 (6) ◽  
pp. 509-528 ◽  
Author(s):  
Orawan Aumporn ◽  
Belkacem Zeghmati ◽  
Xavier Chesneau ◽  
Serm Janjai

Sign in / Sign up

Export Citation Format

Share Document