Optical, magnetic and structural properties of Cr-doped ZnO thin films by sol–gel dip-coating method

2017 ◽  
Vol 4 (9) ◽  
pp. 096403 ◽  
Author(s):  
Zohra N Kayani ◽  
Marya Siddiq ◽  
Saira Riaz ◽  
Shahzad Naseem
2013 ◽  
Vol 35 (12) ◽  
pp. 2418-2424 ◽  
Author(s):  
Soaram Kim ◽  
Hyunsik Yoon ◽  
Do Yeob Kim ◽  
Sung-O Kim ◽  
Jae-Young Leem

2013 ◽  
Vol 667 ◽  
pp. 193-199 ◽  
Author(s):  
Mohd Firdaus Malek ◽  
Mohamad Hafiz Mamat ◽  
Mohamed Zahidi Musa ◽  
Mohd Zainizan Sahdan ◽  
Mohamad Rusop Mahmood

Recent research papers for zinc oxide (ZnO) thin films prepared by dip-coating method are reviewed. The aim is on the factors affecting the properties of ZnO thin films prepared by dip-coating method and the preparation of ZnO solution precursor using sol-gel process. Several of journals have been discovered to find out the related study on this topic. It was found that solution chemical equilibrium, substrate and thermal processing are the factors that contribute to the various properties of ZnO thin films. This review hopefully can help in improving the properties of ZnO thin film for possible applications to photoconductor, integrated sensor, transparent conducting oxide electrodes, optoelectronic devices and so on.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1737 ◽  
Author(s):  
Ahmad M. Alsaad ◽  
Ahmad A. Ahmad ◽  
Qais M. Al-Bataineh ◽  
Areen A. Bani-Salameh ◽  
Hadeel S. Abdullah ◽  
...  

Sol-gel technique is used to synthesize as-grown zinc oxide (ZnO) and iron-nickel (Fe-Ni) co-doped ZnO thin films deposited on glass substrates using dip coating technique. The structural properties and crystal imperfections of as-prepared thin films are investigated. We performed the structural analysis of films using X-ray diffraction (XRD). The XRD analysis reveal that the as-prepared films exhibit wurtzite structure. Furthermore, XRD-line profile analysis is performed to study the correlation between structural properties and imperfections of the nanocomposite thin films. The crystallite size and microstrains parameters are predicted using the Williamson–Hall method. We found that the crystallites size increases as the co-doped (Fe-Ni) concentration is increased. However, microstrains of the nanocomposite films decreases as (Fe-Ni) concentration is increased. The optical properties of the (Fe-Ni) co-doped nanocomposite films are investigated by performing UV-Vis (250 nm–700 nm) spectrophotometer measurements. We found that as the (Fe-Ni) concentration level is steadily increased, transmittance of the undoped ZnO thin films is decreased. Remarkably, refractive index of undoped ZnO thin films is found to exhibit values extending from 1.55 to1.88 that would increase as (Fe-Ni) concentration is increased.


Sign in / Sign up

Export Citation Format

Share Document