scholarly journals Effect of doping and pressure on the electronic and magnetic properties of the quaternary Heusler alloys

Author(s):  
Nasrin Estaji ◽  
mahdi afshar
SPIN ◽  
2019 ◽  
Vol 10 (01) ◽  
pp. 2050002 ◽  
Author(s):  
F. N. Gharbi ◽  
I. E. Rabah ◽  
M. Rabah ◽  
H. Rached ◽  
D. Rached ◽  
...  

In this paper, we investigate the structural, electronic and magnetic properties of CoFeCrZ ([Formula: see text], As,Sb) quaternary Heusler alloy, using the first-principles full potential linear muffin-tin orbital (FP-LMTO) method within the spin gradient generalized approximation (GGA) for the exchange and correlation potential. Our results demonstrate that in ferromagnetic phase, the all alloys CoFeCrZ are stable in type-1 configuration and are half-metallic ferromagnets (HMF) with gaps of 0.99[Formula: see text]eV, 0.57[Formula: see text]eV and 0.70[Formula: see text]Ev, respectively. The obtained negative formation energy shows that CoFeCrZ alloys have strong structural stability. The calculated total magnetic moment, [Formula: see text] for all alloys exhibit Slater-Pauling rule, [Formula: see text]. At zero pressure, the three alloys shown 100% spin-polarization at Fermi–level [Formula: see text] with high Curie temperatures [Formula: see text]. Our calculation indicate also that the half-metallicity and high magnetic moment of CoFeCrP, CoFeCrAs and CoFeCrSb are robust against the lattice compression (up to 7.80%, 5.40% and 11%, respectively). On the basis of these results, it is suggested that the CoFeCrZ Heusler could be suitable for spintronics devices applications.


2019 ◽  
Vol 33 (31) ◽  
pp. 1950389 ◽  
Author(s):  
Hafsa Arshad ◽  
M. Zafar ◽  
S. Ahmad ◽  
M. Rizwan ◽  
M. I. Khan ◽  
...  

In this study, the structural, electronic and magnetic properties of Co-based equiatomic quaternary Heusler alloys (EQHA) CoPdCrZ (Z = Si, Ge, P) are investigated by full potential linearized augmented plane wave (FP-LAPW) method. Three different configurations are employed to find out the most stable structure by structural optimization process. The alloys CoPdCrSi and CoPdCrGe are found to be stable in Type-II structure while CoPdCrP is in Type-I. The calculated electronic and magnetic properties show that CoPdCrSi and CoPdCrGe are nearly half metals while CoPdCrP is a ferromagnetic alloy. By following the Slater–Pauling rule [Formula: see text], the total magnetic moments are calculated. The spin polarization and Curie temperature have also been calculated.


2018 ◽  
Vol 64 (2) ◽  
pp. 135 ◽  
Author(s):  
Boucif Benichou ◽  
Zakia Nabi ◽  
Badra Bouabdallah ◽  
Halima Bouchenafa

We investigate the structural, elastic, electronic and magnetic properties of the Heusler compounds Cu2MnSi, Cu2MnAl and Cu2MnSi1-xAlx quaternary alloys, using the full-potential linear-augmented plane-wave method (FP-LAPW) in the framework of the density functional theory (DFT) using the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Our results provide predictions for the quaternary alloy Cu2MnSi1-xAlx            (x = 0.125, 0.25, 0.375, 0.5) in which no experimental or theoretical data are currently available. We calculate the ground state’s properties of Cu2MnSi1-xAlx alloys for both nonmagnetic and ferromagnetic configurations, which lead to ferromagnetic and metallic compounds. Also, the calculations of the elastic constants and the elastic moduli parameters show that these quaternary Heusler alloys are ductile and anisotropic.


Sign in / Sign up

Export Citation Format

Share Document