scholarly journals Structural, elastic, electronic and magnetic properties of quaternary Heusler alloy Cu2MnSi1-xAlx (x = 0 - 1): First-principles study

2018 ◽  
Vol 64 (2) ◽  
pp. 135 ◽  
Author(s):  
Boucif Benichou ◽  
Zakia Nabi ◽  
Badra Bouabdallah ◽  
Halima Bouchenafa

We investigate the structural, elastic, electronic and magnetic properties of the Heusler compounds Cu2MnSi, Cu2MnAl and Cu2MnSi1-xAlx quaternary alloys, using the full-potential linear-augmented plane-wave method (FP-LAPW) in the framework of the density functional theory (DFT) using the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Our results provide predictions for the quaternary alloy Cu2MnSi1-xAlx            (x = 0.125, 0.25, 0.375, 0.5) in which no experimental or theoretical data are currently available. We calculate the ground state’s properties of Cu2MnSi1-xAlx alloys for both nonmagnetic and ferromagnetic configurations, which lead to ferromagnetic and metallic compounds. Also, the calculations of the elastic constants and the elastic moduli parameters show that these quaternary Heusler alloys are ductile and anisotropic.

2019 ◽  
Vol 65 (5 Sept-Oct) ◽  
pp. 468
Author(s):  
B. Benichou ◽  
H. Bouchenafa ◽  
Z. Nabi ◽  
And B. Bouabdallah

Structural, elastic, electronic and magnetic properties of the quaternary Heusler alloys  are calculated using the full-potential linearized augmented plane wave (FP-LAPW) method in the framework of the density functional theory (DFT) and implemented in WIEN2k code. The exchange-correlation potential is evaluated using the generalized gradient approximation (GGA) within the Perdew-Burke-Ernzerhof (PBE) parameterization. Our theoretically results provide predictions for the mixed  in which no experimental and theoretical data are currently available. The lattice parameter and bulk modulus as well the elastic constants and their related elastic moduli for  have been calculated. Also, the electronic properties including density of states and band structures indicate the metallic character for . Morever, this quaternary Heusler alloy is found to be ferromagnetic, ductile and anisotropic in nature.


2016 ◽  
Vol 34 (4) ◽  
pp. 905-915 ◽  
Author(s):  
M. Rahmoune ◽  
A. Chahed ◽  
A. Amar ◽  
H. Rozale ◽  
A. Lakdja ◽  
...  

AbstractIn this work, first-principles calculations of the structural, electronic and magnetic properties of Heusler alloys CoMnYAl, CoMnYGa and CoMnYIn are presented. The full potential linearized augmented plane waves (FP-LAPW) method based on the density functional theory (DFT) has been applied. The structural results showed that CoMnYZ (Z = Al, Ga, In) compounds in the stable structure of type 1+FM were true half-metallic (HM) ferromagnets. The minority (half-metallic) band gaps were found to be 0.51 (0.158), 0.59 (0.294), and 0.54 (0.195) eV for Z = Al, Ga, and In, respectively. The characteristics of energy bands and origin of minority band gaps were also studied. In addition, the effect of volumetric and tetragonal strain on HM character was studied. We also investigated the structural, electronic and magnetic properties of the doped Heusler alloys CoMnYGa1−xAlx, CoMnYAl1−xInx and CoMnYGa1−xInx (x = 0, 0.25, 0.5, 0.75, 1). The composition dependence of the lattice parameters obeys Vegard’s law. All alloy compositions exhibit HM ferromagnetic behavior with a high Curie temperature (TC).


SPIN ◽  
2019 ◽  
Vol 10 (01) ◽  
pp. 2050002 ◽  
Author(s):  
F. N. Gharbi ◽  
I. E. Rabah ◽  
M. Rabah ◽  
H. Rached ◽  
D. Rached ◽  
...  

In this paper, we investigate the structural, electronic and magnetic properties of CoFeCrZ ([Formula: see text], As,Sb) quaternary Heusler alloy, using the first-principles full potential linear muffin-tin orbital (FP-LMTO) method within the spin gradient generalized approximation (GGA) for the exchange and correlation potential. Our results demonstrate that in ferromagnetic phase, the all alloys CoFeCrZ are stable in type-1 configuration and are half-metallic ferromagnets (HMF) with gaps of 0.99[Formula: see text]eV, 0.57[Formula: see text]eV and 0.70[Formula: see text]Ev, respectively. The obtained negative formation energy shows that CoFeCrZ alloys have strong structural stability. The calculated total magnetic moment, [Formula: see text] for all alloys exhibit Slater-Pauling rule, [Formula: see text]. At zero pressure, the three alloys shown 100% spin-polarization at Fermi–level [Formula: see text] with high Curie temperatures [Formula: see text]. Our calculation indicate also that the half-metallicity and high magnetic moment of CoFeCrP, CoFeCrAs and CoFeCrSb are robust against the lattice compression (up to 7.80%, 5.40% and 11%, respectively). On the basis of these results, it is suggested that the CoFeCrZ Heusler could be suitable for spintronics devices applications.


SPIN ◽  
2021 ◽  
Author(s):  
Youcef Daoudi ◽  
Hadj Moulay Ahmed Mazouz ◽  
Brahim Lagoun ◽  
Ali Benghia

We report first-principles investigation on structural, electronic and magnetic properties of 3d transition metal element-doped rock-salt calcium selenide Ca[Formula: see text]TMxSe (TM = V, Cr and Mn) at concentrations [Formula: see text] = 0.0625, 0.125 and 0.25. We performed the calculations in the framework of the density functional theory (DFT) using the full-potential linearized augmented plane waves plus local orbitals (FP-LAPW+lo) method within the Wu–Cohen generalized gradient approximation (WC-GGA) for the structural optimization and the Tran–Blaha modified Becke–Johnson (TBmBJ) potential for the electronic and the magnetic properties. The computed spin-polarized band structures and densities of states show that Ca[Formula: see text]CrxSe compounds at all studied concentrations are half-metallic ferromagnets with a complete spin polarization of 100% at Fermi-level while the Ca[Formula: see text]VxSe and Ca[Formula: see text]MnxSe are ferromagnetic semiconductors. The total magnetic moments for Ca[Formula: see text]VxSe, Ca[Formula: see text]CrxSe, and Ca[Formula: see text]MnxSe show the integer values of 3[Formula: see text][Formula: see text], 4[Formula: see text][Formula: see text], and 5[Formula: see text][Formula: see text], respectively, with a major contribution of transition metal elements (TM) in the total magnetization. Also, we reported the calculated exchange constants [Formula: see text] and [Formula: see text] and the band edge spin splitting of the valence ([Formula: see text]) and conduction ([Formula: see text]) bands. The ferromagnetism of these compounds is due to the super-exchange and the double-exchange mechanisms in addition to the strong p–d exchange interaction. Therefore, the predicted results indicate that the diluted Ca[Formula: see text]TMxSe (TM = V, Cr, Mn) compounds are suitable candidates for a possible application in the field of spintronic technology.


2019 ◽  
Vol 33 (31) ◽  
pp. 1950389 ◽  
Author(s):  
Hafsa Arshad ◽  
M. Zafar ◽  
S. Ahmad ◽  
M. Rizwan ◽  
M. I. Khan ◽  
...  

In this study, the structural, electronic and magnetic properties of Co-based equiatomic quaternary Heusler alloys (EQHA) CoPdCrZ (Z = Si, Ge, P) are investigated by full potential linearized augmented plane wave (FP-LAPW) method. Three different configurations are employed to find out the most stable structure by structural optimization process. The alloys CoPdCrSi and CoPdCrGe are found to be stable in Type-II structure while CoPdCrP is in Type-I. The calculated electronic and magnetic properties show that CoPdCrSi and CoPdCrGe are nearly half metals while CoPdCrP is a ferromagnetic alloy. By following the Slater–Pauling rule [Formula: see text], the total magnetic moments are calculated. The spin polarization and Curie temperature have also been calculated.


2021 ◽  
Vol 24 (2) ◽  
pp. 23703
Author(s):  
M. Sayah ◽  
S. Zeffane ◽  
M. Mokhtari ◽  
F. Dahmane ◽  
L. Zekri ◽  
...  

In this paper, we use the first-principles calculations based on the density functional theory to investigate structural, electronic and magnetic properties of Fe2YSn with (Y = Mn, Ti and V). The generalized gradient approximation (GGA) method is used for calculations. The Cu2MnAl type structure is energetically more stable than the Hg2CuTi type structure. The negative formation energy is shown as the evidence of thermodynamic stability of the alloy. The calculated total spin moment is found as 3μB and 0μB at the equilibrium lattice constant for Fe2MnSn and Fe2TiSn respectively, which agrees with the Slater-Pauling rule of Mt= Zt-24. The study of electronic and magnetic properties proves that Fe2MnSn and Fe2TiSn full-Heusler alloys are complete half-metallic ferromagnetic materials.


Author(s):  
S. Belhachi ◽  
S. Amari

We have investigated the electronic and magnetic properties of the doped Heusler alloys Cu2Cr[Formula: see text]V[Formula: see text]Ga ([Formula: see text], 0.5, and 1) using first-principles density functional theory within the generalized gradient approximation scheme. Lattice constants of all phases were determined, and the absence of energy gap in both the spin channels predicts that the materials are metallic. The calculated formation energies are negative, indicating stability of these compounds. Electronic structure and magnetic behavior are reported for the first time for the Cu2Cr[Formula: see text]V[Formula: see text]Ga alloy. It was found that the alloys are ferromagnetic, and metallic witch is confirmed by GGA[Formula: see text]U calculation.


SPIN ◽  
2017 ◽  
Vol 07 (04) ◽  
pp. 1750010 ◽  
Author(s):  
L. Seddik ◽  
S. Amari ◽  
K. O. Obodo ◽  
L. Beldi ◽  
H. I. Faraoun ◽  
...  

In this study, we present the calculated structural, electronic and magnetic properties of mixed Heusler alloys (Ni[Formula: see text]Co[Formula: see text]MnSn. Using ab initio calculations with the full-potential augmented plane-wave method (FP-LAPW), we evaluated the various possible configurations of Ni and Co sites in the (Ni[Formula: see text]Co[Formula: see text]MnSn crystallographic lattice. The lowest energy configuration is determined based on energetic considerations. The calculated equilibrium lattice parameters and magnetic moments are in a reasonable agreement with available experimental data. Of interest, we found that the change of total magnetic moment can be interpreted as a linear variation of the magnetic moment of manganese and cobalt atoms.


2016 ◽  
Vol 3 (1) ◽  
pp. 50 ◽  
Author(s):  
Madhav Prasad Ghimire ◽  
Gopi Chandra Kaphle ◽  
R.K. Thapa

<p>We have studied the electronic and magnetic properties of double perovskites Nd<sub>2</sub>MgIrO<sub>6</sub> by means of full-potential linearized augmented plane wave (FP-LAPW) method based on density-functional theory (DFT). For the exchange-correlation potential, generalized gradient approximation (GGA) has been used. Based on our DFT calculations, Nd<sub>2</sub>MgIrO<sub>6</sub> is found to have an antiferromagnetic (AFM) ground state. The material shows Mott-Hubbard type insulator, which is observed to occur due to strong correlation in Nd-4f and Ir-5d states in addition to large crystal distortion, observed in the system. Strong hybridization between O-2p, Ir-5d and Nd-4f electrons are observed from the density of states findings. Our results shows that the 5d electrons of Ir hybridize strongly with O-2p states close to the Fermi level giving rise to the insulating state with a Mott-gap of ~0.9 eV in Nd<sub>2</sub>MgIrO<sub>6</sub>. Our study suggests that the total magnetic moment reduces to 5.0 μ<sub>B</sub> per formula unit as a result of itinerant super-exchange rather than the exchange interaction involving individual ions of Nd and Ir atoms.</p><p>Journal of Nepal Physical Society Vol.3(1) 2015: 50-54</p>


2020 ◽  
Author(s):  
Amaria Bekhti-Siad ◽  
M. Baira ◽  
A. Bekhti Siad ◽  
M. E. Monir ◽  
F. Z. Dahou

Abstract The structural, elastic, electronic and magnetic properties of cubic double perovskite Pb2FeTaO6 have been investigated using self-consistent ab-initio calculation through full-potential linearized augmented plane wave (FP-LAPW) method within the frame work of the spin-polarized density functional theory (DFT), considering generalized gradient approximation (GGA) described by Perdew–Burke–Ernzerhof (PBE), GGA+U and mBJ-GGA. Pb2FeTaO6 is found as ductile material from the elastic calculations. The obtained magnetic results show that Pb2FeTaO6 is stable in the ferromagnetic state; the electronic properties show a half-metallic behavior using GGA and GGA+U and a semiconducting one with TB-mBJ, magnetic moments of each atom are also discussed in this study. These results confirm the use of this compound in spintronic devices.


Sign in / Sign up

Export Citation Format

Share Document