BCS theory

Author(s):  
Richard A Dunlap
Keyword(s):  
2010 ◽  
Vol 297-301 ◽  
pp. 75-81 ◽  
Author(s):  
Alexander Feher ◽  
S.B. Feodosyev ◽  
I.A. Gospodarev ◽  
V.I. Grishaev ◽  
K.V. Kravchenko ◽  
...  

The calculation of the local density of electronic states of graphene with vacancies, using the method of Jacobi matrix, was performed. It was shown that for atoms in the sublattice with a vacancy the local density of electronic states conserves the Dirac singularity, similarly as in an ideal graphene. A quasi-Dirac singularity was observed also in the phonon spectra of graphite for the atom displacements in the direction perpendicular to layers. Changes of phonon spectra of graphite intercalated with various metals were analyzed. On the basis of our results and using the BCS theory and Eliashberg equation we proposed what dynamic properties an intercalated graphite system should show to obtain an increased Tc.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2018 ◽  
Vol 2018 (12) ◽  
pp. 123101 ◽  
Author(s):  
Xu-Yang Hou ◽  
Xun Huang ◽  
Yan He ◽  
Hao Guo
Keyword(s):  

2006 ◽  
Vol 21 (04) ◽  
pp. 910-913 ◽  
Author(s):  
Mei Huang

Magnetic instability in gapless superconductors still remains as a puzzle. In this article, we point out that the instability might be caused by using BCS theory in mean-field approximation, where the phase fluctuation has been neglected. The mean-field BCS theory describes very well the strongly coherent or rigid superconducting state. With the increase of mismatch between the Fermi surfaces of pairing fermions, the phase fluctuation plays more and more important role, and "soften" the superconductor. The strong phase fluctuation will eventually quantum disorder the superconducting state, and turn the system into a phase-decoherent pseudogap state.


2016 ◽  
Vol 237-238 ◽  
pp. 42-48 ◽  
Author(s):  
X.H. Zheng ◽  
D.G. Walmsley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document