One-dimensional ordinary–slow extraordinary–Bernstein mode conversion in the electron cyclotron range of frequencies

2017 ◽  
Vol 19 (8) ◽  
pp. 085101
Author(s):  
Xingyu GUO ◽  
Zhe GAO ◽  
Guozhang JIA
2014 ◽  
Vol 21 (6) ◽  
pp. 062108 ◽  
Author(s):  
S. H. Kim ◽  
H. Y. Lee ◽  
J. G. Jo ◽  
Y. S. Hwang

Author(s):  
Vincent Kather ◽  
Finn Lückoff ◽  
Christian O. Paschereit ◽  
Kilian Oberleithner

The generation and turbulent transport of temporal equivalence ratio fluctuations in a swirl combustor are experimentally investigated and compared to a one-dimensional transport model. These fluctuations are generated by acoustic perturbations at the fuel injector and play a crucial role in the feedback loop leading to thermoacoustic instabilities. The focus of this investigation lies on the interplay between fuel fluctuations and coherent vortical structures that are both affected by the acoustic forcing. To this end, optical diagnostics are applied inside the mixing duct and in the combustion chamber, housing a turbulent swirl flame. The flame was acoustically perturbed to obtain phase-averaged spatially resolved flow and equivalence ratio fluctuations, which allow the determination of flux-based local and global mixing transfer functions. Measurements show that the mode-conversion model that predicts the generation of equivalence ratio fluctuations at the injector holds for linear acoustic forcing amplitudes, but it fails for non-linear amplitudes. The global (radially integrated) transport of fuel fluctuations from the injector to the flame is reasonably well approximated by a one-dimensional transport model with an effective diffusivity that accounts for turbulent diffusion and dispersion. This approach however, fails to recover critical details of the mixing transfer function, which is caused by non-local interaction of flow and fuel fluctuations. This effect becomes even more pronounced for non-linear forcing amplitudes where strong coherent fluctuations induce a non-trivial frequency dependence of the mixing process. The mechanisms resolved in this study suggest that non-local interference of fuel fluctuations and coherent flow fluctuations is significant for the transport of global equivalence ratio fluctuations at linear acoustic amplitudes and crucial for non-linear amplitudes. To improve future predictions and facilitate a satisfactory modelling, a non-local, two-dimensional approach is necessary.


2007 ◽  
Vol 3 (S247) ◽  
pp. 296-302 ◽  
Author(s):  
A. M. Dee McDougall ◽  
Alan W. Hood

AbstractMode conversion in the region where the sound and Alfvén speeds are equal is a complex process, which has been studied both analytically and numerically, and has been seen in observations. In order to further the understanding of this process we set up a simple, one-dimensional model, and examine wave propagation through this system using a combination of analytical and numerical techniques. Simulations are carried out in a gravitationally stratified atmosphere with a uniform, vertical magnetic field for both isothermal and non-isothermal cases. For the non-isothermal case a temperature profile is chosen to mimic the steep temperature gradient encountered at the transition region. In all simulations, a slow wave is driven on the upper boundary, thus propagating down from low-β to high-β plasma across the mode-conversion region. In addition, a detailed analytical study is carried out where we predict the amplitude and phase of the transmitted and converted components of the incident wave as it passes through the mode-conversion region. A comparison of these analytical predictions with the numerical results shows good agreement, giving us confidence in both techniques. This knowledge may be used to help determine wave types observed and give insight into which modes may be involved in coronal heating.


Sign in / Sign up

Export Citation Format

Share Document