Spacecraft in ‘warp bubble’ could travel faster than light

Physics World ◽  
2021 ◽  
Vol 34 (5) ◽  
pp. 6i-6i
Author(s):  
Benjamin Skuse
Keyword(s):  
1990 ◽  
Vol 160 (6) ◽  
pp. 141 ◽  
Author(s):  
Boris M. Bolotovskii ◽  
Vladimir P. Bykov
Keyword(s):  

Author(s):  
Paul J. Nahin

A little discussed aspect of Heaviside's work in electromagnetics concerned faster-than-light (FTL) charged particles, precursors to the hypothetical tachyon and his discovery that such motion should produce a characteristic radiation signature (now called Cherenkov radiation ). When Heaviside wrote, the time travel implications of FTL were not known (Einstein was still a teenager), and in this paper some speculations are offered on what Heaviside would have thought of FTL time travel, and of the associated (now classic) time travel paradoxes, including the possibility (or not) of sending information into the past. This article is part of the theme issue ‘Celebrating 125 years of Oliver Heaviside's ‘Electromagnetic Theory’’.


1968 ◽  
Vol 171 (5) ◽  
pp. 1357-1361 ◽  
Author(s):  
Torsten Alväger ◽  
Michael N. Kreisler

Physics World ◽  
2000 ◽  
Vol 13 (9) ◽  
pp. 21-22 ◽  
Author(s):  
Aephraim M Steinberg
Keyword(s):  

2021 ◽  
Vol 11 (3) ◽  
pp. 43-49
Author(s):  
Hamdoon A. Khan ◽  

With the consideration of the light which carries the photon particles, the Lorentz transformation was constructed with an impressive mathematical approach. But the generalization of that equation for all the velocities of the universe is direct enforcement on other things not to travel faster than light. It has created serious issues in every scientific research that was done in the last century based on the special theory of relativity. This paper replaces the velocity of light with some other velocities and shows us the possible consequences and highlights the issues of special relativity. If I travel through my past or future and was able to see another me there, who would be the real Hamdoon I or the one I see there in the past or future! If the real one is only me, the one I saw, is not me, so, I could not travel through my or someone else's past or future. Therefore, no one can travel through time. If both of us are the same, can the key of personal identity be duplicated or be separated into two or more parts? These are some of the fundamental philosophical arguments that annihilate the concept of time travel which is one of the sequels of special relativity.


2000 ◽  
Vol 15 (18) ◽  
pp. 2793-2812 ◽  
Author(s):  
ERASMO RECAMI ◽  
FLAVIO FONTANA ◽  
ROBERTO GARAVAGLIA

Some experiments, performed at Berkeley, Cologne, Florence, Vienna, Orsay and Rennes led to the claim that something seems to travel with a group velocity larger than the speed c of light in vacuum. Various other experimental results seem to point in the same direction: For instance, localized wavelet-type solutions of Maxwell equations have been found, both theoretically and experimentally, that travel with Superluminal speed. Even muonic and electronic neutrinos — it has been proposed — might be "tachyons," since their square mass appears to be negative. With regard to the first-mentioned experiments, it was very recently claimed by Guenter Nimtz that those results with evanescent waves or "tunneling photons" — implying Superluminal signal and impulse transmission — violate Einstein causality. In this note, on the contrary, we want to stress that all such results do not place relativistic causality in jeopardy, even if they refer to actual tachyonic motions: In fact, special relativity can cope even with Superluminal objects and waves. For instance, it is possible (at least in microphysics) to solve also the known causal paradoxes, devised for "faster than light" motion, even if this is not widely recognized. Here we show, in detail and rigorously, how to solve the oldest causal paradox, originally proposed by Tolman, which is the kernel of many further tachyon paradoxes. The key to the solution is a careful application of tachyon mechanics, as it unambiguously follows from special relativity.


1969 ◽  
Vol 183 (5) ◽  
pp. 1105-1108 ◽  
Author(s):  
William B. Rolnick
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document