scholarly journals Large air quality and human health impacts due to Amazon forest and vegetation fires

2020 ◽  
Vol 2 (9) ◽  
pp. 095001 ◽  
Author(s):  
Edward W Butt ◽  
Luke Conibear ◽  
Carly L Reddington ◽  
Eoghan Darbyshire ◽  
William T Morgan ◽  
...  
Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1361
Author(s):  
Scott L. Goodrick

The Atmosphere Special Issue “Special Issue Air Quality and Smoke Management” explores our ability to simulate wildland fire smoke events and the potential to link such modeling to future studies of human health impacts [...]


2018 ◽  
Vol 182 ◽  
pp. 193-199 ◽  
Author(s):  
Varsha Gopalakrishnan ◽  
Satoshi Hirabayashi ◽  
Guy Ziv ◽  
Bhavik R. Bakshi

2014 ◽  
Vol 14 (2) ◽  
pp. 969-978 ◽  
Author(s):  
T. M. Thompson ◽  
R. K. Saari ◽  
N. E. Selin

Abstract. We evaluate how regional characteristics of population and background pollution might impact the selection of optimal air quality model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefit mapping program (BenMAP) to calculate the human health impacts associated with changes in ozone and fine particulate matter resulting from an emission reduction scenario. We evaluate this same scenario at 36, 12 and 4 km resolution for nine regions in the eastern US representing varied characteristics. We find that the human health benefits associated with changes in ozone concentrations are sensitive to resolution. This finding is especially strong in urban areas where we estimate that benefits calculated using coarse resolution results are on average two times greater than benefits calculated using finer scale results. In three urban areas we analyzed, results calculated using 36 km resolution modeling fell outside the uncertainty range of results calculated using finer scale modeling. In rural areas the influence of resolution is less pronounced with only an 8% increase in the estimated health impacts when using 36 km resolution over finer scales. In contrast, health benefits associated with changes in PM2.5 concentrations were not sensitive to resolution and did not follow a pattern based on any regional characteristics evaluated. The largest difference between the health impacts estimated using 36 km modeling results and either 12 or 4 km results was at most ±10% in any region. Several regions showed increases in estimated benefits as resolution increased (opposite the impact seen with ozone modeling), while some regions showed decreases in estimated benefits as resolution increased. In both cases, the dominant contribution was from secondary PM. Additionally, we found that the health impacts calculated using several individual concentration–response functions varied by a larger amount than the impacts calculated using results modeled at different resolutions. Given that changes in PM2.5 dominate the human health impacts, and given the uncertainty associated with human health response to changes in air pollution, we conclude that, when estimating the human health benefits associated with decreases in ozone and PM2.5 together, the benefits calculated at 36 km resolution agree, within errors, with the benefits calculated using fine (12 km or finer) resolution modeling when using the current methodology for assessing policy decisions.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 941
Author(s):  
Fengjun Zhao ◽  
Yongqiang Liu ◽  
Lifu Shu ◽  
Qi Zhang

The air quality and human health impacts of wildfires depend on fire, meteorology, and demography. These properties vary substantially from one region to another in China. This study compared smoke from more than a dozen wildfires in Northeast, North, and Southwest China to understand the regional differences in smoke transport and the air quality and human health impacts. Smoke was simulated using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) with fire emissions obtained from the Global Fire Emission Database (GFED). Although the simulated PM2.5 concentrations reached unhealthy or more severe levels at regional scale for some largest fires in Northeast China, smoke from only one fire was transported to densely populated areas (population density greater than 100 people/km2). In comparison, the PM2.5 concentrations reached unhealthy level in local densely populated areas for a few fires in North and Southwest China, though they were very low at regional scale. Thus, individual fires with very large sizes in Northeast China had a large amount of emissions but with a small chance to affect air quality in densely populated areas, while those in North and Southwest China had a small amount of emissions but with a certain chance to affect local densely populated areas. The results suggest that the fire and air quality management should focus on the regional air quality and human health impacts of very large fires under southward/southeastward winds toward densely populated areas in Northeast China and local air pollution near fire sites in North and Southwest China.


2020 ◽  
Vol 15 (10) ◽  
pp. 105013
Author(s):  
Flávio D A Quadros ◽  
Mirjam Snellen ◽  
Irene C Dedoussi

2013 ◽  
Vol 13 (5) ◽  
pp. 14141-14161 ◽  
Author(s):  
T. M. Thompson ◽  
R. K. Saari ◽  
N. E. Selin

Abstract. We evaluate how regional characteristics of weather, population, and background pollution might impact the selection of optimal model resolution when calculating the human health impacts of changes to air quality. Using an approach consistent with air quality policy evaluation, we use a regional chemical transport model (CAMx) and a health benefits mapping program (BenMAP) to calculate the human health impacts associated with changes in ozone and fine particulate matter resulting from an emissions reduction scenario. We evaluate this same scenario at 36, 12 and 4 km resolution for nine regions in the Eastern US representing varied characteristics. We find that the human health benefits associated with changes in ozone concentrations are sensitive to resolution, especially in urban areas where we estimate that benefits calculated using coarse resolution results are on average two times greater than benefits calculated using finer scale results. In three urban areas we analyzed, results calculated using 36 km resolution modeling fell outside the uncertainty range of results calculated using finer scale modeling. In rural areas the influence of resolution is less pronounced with only an 8% increase in the estimated health impacts when using 36 km resolution over finer scales. In contrast, health benefits associated with changes in PM2.5 concentrations were not sensitive to resolution and did not follow a pattern based on any regional characteristics evaluated. The largest difference between the health impacts estimated using 36 km modeling results and either 12 or 4 km results was at most ±10% in any region. Several regions showed increases in estimated benefits as resolution increased (opposite the impact seen with ozone modeling) due to a higher contribution of primary PM in those regions, while some regions showed decreases in estimated benefits as resolution increased due to a higher contribution of secondary PM. Given that changes in PM2.5 dominate the human health impacts we conclude that human health benefits associated with decreases in ozone plus PM2.5, when calculated at 36 km resolution are indistinguishable from the benefits calculated using fine (12 km or finer) resolution modeling in the context of policy decisions.


2015 ◽  
Vol 26 (3) ◽  
pp. 389-406 ◽  
Author(s):  
Maria Francesca Milazzo ◽  
Francesco Spina

Purpose – The purpose of this paper is to quantify the human health impacts of soy-biodiesel production with the aim to discuss about its environmental sustainability. Design/methodology/approach – The integrated use of two current approaches, risk assessment (RA) and life cycle assessment (LCA), has allowed improvement of the potentialities of both in obtaining a more complete analysis. The implementation of a life cycle indicator for the assessment of the impacts on the human health, integrating the features of both approaches, is the main focus of this paper. Findings – It has been found that, although the biodiesel is a green fuel, it has some criticalities in its life cycle, which cannot be disregarded. In fact, even if biodiesel is essentially a clean fuel there are some phases, prior to the industrial phase, that can cause negative effects on human health and ecosystems. Practical implications – Results suggest some measures which can be adopted to substantially reduce human health impacts. Further alternative could be analysed in future to gain more insight about the use of biodiesel fuels. Originality/value – The estimation of the impacts of a process producing biodiesel has been made by using a novel approach. The novelty is associated with the calculation of the impacts on human health by using the transfer factors applied in RA. The use of such factors, properly modified in order to estimate the impacts on a wider scale than a site-dimension, allows defining a holistic approach, as LCA and RA are used as complete units but at the same time can be related to each other.


Sign in / Sign up

Export Citation Format

Share Document