scholarly journals The Neuroprotective Effect of Dimethyl Fumarate in an MPTP-Mouse Model of Parkinson's Disease: Involvement of Reactive Oxygen Species/Nuclear Factor-κB/Nuclear Transcription Factor Related to NF-E2

2017 ◽  
Vol 27 (8) ◽  
pp. 453-471 ◽  
Author(s):  
Michela Campolo ◽  
Giovanna Casili ◽  
Flavia Biundo ◽  
Rosalia Crupi ◽  
Marika Cordaro ◽  
...  
2005 ◽  
Vol 389 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Gillian HUGHES ◽  
Michael P. MURPHY ◽  
Elizabeth C. LEDGERWOOD

ROS (reactive oxygen species) from mitochondrial and non-mitochondrial sources have been implicated in TNFα (tumour necrosis factor α)-mediated signalling. In the present study, a new class of specific mitochondria-targeted antioxidants were used to explore directly the role of mitochondrial ROS in TNF-induced apoptosis. MitoVit E {[2-(3,4-dihydro-6-hydroxy-2,5,7,8-tetramethyl-2H-1-benzopyran-2-yl)ethyl]triphenylphosphonium bromide} (vitamin E attached to a lipophilic cation that facilitates accumulation of the antioxidant in the mitochondrial matrix) enhanced TNF-induced apoptosis of U937 cells. In time course analyses, cleavage and activation of caspase 8 in response to TNF were not affected by MitoVit E, whereas the activation of caspase 3 was significantly increased. Furthermore, there was an increased cleavage of the proapoptotic Bcl-2 family member Bid and an increased release of cytochrome c from mitochondria, in cells treated with TNF in the presence of MitoVit E. We considered several mechanisms by which MitoVit E might accelerate TNF-induced apoptosis including mitochondrial integrity (ATP/ADP levels and permeability transition), alterations in calcium homoeostasis and transcription factor activation. Of these, only the transcription factor NF-κB (nuclear factor κB) was implicated. TNF caused maximal nuclear translocation of NF-κB within 15 min, compared with 1 h in cells pretreated with MitoVit E. Thus the accumulation of an antioxidant within the mitochondrial matrix enhances TNF-induced apoptosis by decreasing or delaying the expression of the protective antiapoptotic proteins. These results demonstrate that mitochondrial ROS production is a physiologically relevant component of the TNF signal-transduction pathway during apoptosis, and reveal a novel functional role for mitochondrial ROS as a temporal regulator of NF-κB activation and NF-κB-dependent antiapoptotic signalling.


2021 ◽  
Vol 37 (9) ◽  
pp. 564-572
Author(s):  
Lingxiu Zhang ◽  
Huilan Yi ◽  
Nan Sang

Sulfur dioxide (SO2) is a common air pollutant that can exacerbate asthmatic airway inflammation. The mechanisms underlying these effects are not yet fully understood. In this study, we investigated the effects of SO2 exposure (10 mg/m3) on asthmatic airway inflammation in ovalbumin-induced asthmatic mice. Our results showed that SO2 exposure alone induced slight airway injury, decreased superoxide dismutase activity, and increased nuclear factor-κB (NF-κB) expression in the lungs of mice. Moreover, SO2 exposure in asthmatic mice induced marked pathological damage, significantly increased the counts of inflammatory cells (e.g., macrophages, lymphocytes, and eosinophils) in bronchoalveolar lavage fluid, and significantly enhanced malondialdehyde and glutathione levels in the lungs. Moreover, the expression of toll-like receptor 4 (TLR4), NF-κB, pro-inflammatory cytokines (e.g., tumor necrosis factor α and interleukin-6), and type II T-helper cell (Th2) cytokines was found to be elevated in the mice exposed to SO2 and ovalbumin compared to those exposed to ovalbumin alone. These results suggest that SO2 amplifies Th2-mediated inflammatory responses, which involve reactive oxygen species and TLR4/NF-κB pathway activation; these can further enhance Th2 cytokine expression and eosinophilic inflammation. Thus, our findings provide important evidence to understand a potential mechanism through which SO2 may exacerbate airway asthmatic inflammation.


Sign in / Sign up

Export Citation Format

Share Document