Diagnosing an Opportunistic Fungal Pathogen on Spaceflight-Grown Plants Using the MinION Sequencing Platform

Astrobiology ◽  
2021 ◽  
Author(s):  
Natasha J. Haveman ◽  
Andrew C. Schuerger
2006 ◽  
Vol 5 (6) ◽  
pp. 916-923 ◽  
Author(s):  
Crystal R. Icenhour ◽  
Theodore J. Kottom ◽  
Andrew H. Limper

ABSTRACT Pneumocystis continues to represent an important opportunistic fungal pathogen of those with compromised immunity. Thus, it is crucial to identify factors that affect its viability and pathogenicity. We previously reported the first identification of melanins in Pneumocystis. In the present study, we sought to further characterize these components and define the function for these melanins. Melanins extracted from Pneumocystis and melanized Pneumocystis cells were analyzed by electron spin resonance spectroscopy, revealing spectra consistent with melanins from other fungi. Immunofluorescence assays using anti-melanin monoclonal antibodies showed that melanins are widely present across Pneumocystis host species, including mouse-, ferret-, and human-derived Pneumocystis organisms, as well as Pneumocystis carinii derived from rat. Using immunoelectron microscopy, melanins were found to localize to the cell wall and cytoplasm of P. carinii cysts, as well as to intracystic bodies within mature cysts. Next, the role of melanins on the maintenance of Pneumocystis viability was determined by using quantitative reverse transcription-PCR measurement of the heat shock protein mRNA under adverse environmental conditions. Using a new method to promote the melanization of Pneumocystis, we observed that strongly melanized Pneumocystis retained viability to a greater degree when exposed to UV irradiation or desiccation compared to less-pigmented organisms. These studies support our previous identification of Pneumocystis melanins across the genus, further characterize these Pneumocystis components, and demonstrate that melanins protect Pneumocystis from environmental stressors.


mBio ◽  
2021 ◽  
Author(s):  
Laure Nicolas Annick Ries ◽  
Patricia Alves de Castro ◽  
Lilian Pereira Silva ◽  
Clara Valero ◽  
Thaila Fernanda dos Reis ◽  
...  

Aspergillus fumigatus is an opportunistic fungal pathogen in humans. During infection, A. fumigatus is predicted to use host carbon sources, such as acetate, present in body fluids and peripheral tissues, to sustain growth and promote colonization and invasion.


2021 ◽  
Author(s):  
Amanda Smith ◽  
Levi Morran ◽  
Meleah A. Hickman

The ability to generate genetic variation facilitates rapid adaptation in stressful environments. The opportunistic fungal pathogen Candida albicans frequently undergoes large-scale genomic changes, including aneuploidy and loss-of heterozygosity (LOH), following exposure to host environments. However, the specific host factors inducing C. albicans genome instability remain largely unknown. Here, we leveraged the genetic tractability of nematode hosts to investigate whether innate immune components, including antimicrobial peptides (AMPs) and reactive oxygen species (ROS), induced host-associated C. albicans genome instability. C. albicans associated with immunocompetent hosts carried multiple large-scale genomic changes including LOH, whole chromosome, and segmental aneuploidies. In contrast, C. albicans associated with immunocompromised hosts deficient in AMPs or ROS production had reduced LOH frequencies and fewer, if any, additional genomic changes. To evaluate if extensive host-induced genomic changes had long-term consequences for C. albicans adaptation, we experimentally evolved C. albicans in either immunocompetent or immunocompromised hosts and selected for increased virulence. C. albicans evolved in immunocompetent hosts rapidly increased virulence, but not in immunocompromised hosts. Taken together, this work suggests that host-produced ROS and AMPs induces genotypic plasticity in C. albicans which facilitates rapid evolution.


1996 ◽  
Vol 40 (3) ◽  
pp. 541-545 ◽  
Author(s):  
Y Wang ◽  
A Casadevall

Cryptococcus neoformans is an opportunistic fungal pathogen which becomes heavily melanized in the presence of phenolic substrates such as L-dopa. Various drugs are known to bind to melanin with high affinity, including the antipsychotic agent trifluoperazine and the antimalarial agent chloroquine. We hypothesized that drugs which bind melanin may have different toxicities for melanized and nonmelanized C. neoformans cells. The effects of trifluoperazine and chloroquine or C. neoformans were determined by measuring cell viability after exposure to these drugs. Cell viability was measured by CFU determination and flow cytometry with propidium iodide staining. Melanized cells were more susceptible than nonmelanized cells to the fungicidal effects of trifluoperazine. Chloroquine had no fungicidal effect on either melanized or nonmelanized C. neoformans under the conditions studied. Flow cytometry of trifluoperazine-treated C. neoformans cells stained with the mitochondrial stain dihydrorhodamine 123 revealed fluorescence changes consistent with mitochondrial damage. Our results indicate that melanized and nonmelanized C. neoformans cells can differ in susceptibility to certain drugs and suggest that strategies which target melanin may be productive for antifungal-drug discovery.


Sign in / Sign up

Export Citation Format

Share Document