The evolution of alternative biofilms in an opportunistic fungal pathogen: An explanation for how new signal transduction pathways may evolve

2014 ◽  
Vol 22 ◽  
pp. 235-243 ◽  
Author(s):  
David R. Soll
HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 614e-614
Author(s):  
Elizabeth A. Bihn ◽  
Robert J. Ferl

The 14-3-3 proteins were originally characterized in mammalian brains and were thought to be specifically involved in neurotransmitter production. Subsequent research has revealed that this family of proteins is ubiquitous in eucaryotic cells and is involved in a wide range of regulatory and signal transduction pathways. For instance, some 14-3-3 proteins have been associated with the signal transduction in response to fungal pathogen attack and to other environmental factors that affect transcription. In Arabidopsis, 10 isoforms of 14-3-3 have been isolated, raising the possibility that diversity of function may be governed by cellular and subcellular specificities of expression and localization. We have investigated the localization of certain 14-3-3 isoforms through transgenic expression of epitope-tagged 14-3-3s.


2007 ◽  
Vol 71 (2) ◽  
pp. 348-376 ◽  
Author(s):  
Subhrajit Biswas ◽  
Patrick Van Dijck ◽  
Asis Datta

SUMMARY Candida albicans is an opportunistic fungal pathogen that is found in the normal gastrointestinal flora of most healthy humans. However, under certain environmental conditions, it can become a life-threatening pathogen. The shift from commensal organism to pathogen is often correlated with the capacity to undergo morphogenesis. Indeed, under certain conditions, including growth at ambient temperature, the presence of serum or N-acetylglucosamine, neutral pH, and nutrient starvation, C. albicans can undergo reversible transitions from the yeast form to the mycelial form. This morphological plasticity reflects the interplay of various signal transduction pathways, either stimulating or repressing hyphal formation. In this review, we provide an overview of the different sensing and signaling pathways involved in the morphogenesis and pathogenesis of C. albicans. Where appropriate, we compare the analogous pathways/genes in Saccharomyces cerevisiae in an attempt to highlight the evolution of the different components of the two organisms. The downstream components of these pathways, some of which may be interesting antifungal targets, are also discussed.


2020 ◽  
Vol 48 (2) ◽  
pp. 613-620
Author(s):  
Clara Ortegón Salas ◽  
Katharina Schneider ◽  
Christopher Horst Lillig ◽  
Manuela Gellert

Processing of and responding to various signals is an essential cellular function that influences survival, homeostasis, development, and cell death. Extra- or intracellular signals are perceived via specific receptors and transduced in a particular signalling pathway that results in a precise response. Reversible post-translational redox modifications of cysteinyl and methionyl residues have been characterised in countless signal transduction pathways. Due to the low reactivity of most sulfur-containing amino acid side chains with hydrogen peroxide, for instance, and also to ensure specificity, redox signalling requires catalysis, just like phosphorylation signalling requires kinases and phosphatases. While reducing enzymes of both cysteinyl- and methionyl-derivates have been characterised in great detail before, the discovery and characterisation of MICAL proteins evinced the first examples of specific oxidases in signal transduction. This article provides an overview of the functions of MICAL proteins in the redox regulation of cellular functions.


Sign in / Sign up

Export Citation Format

Share Document