Superior Facilitation of an Action Observation Network by Congruent Character Movements in Brain–Computer Interface Action-Observation Games

Author(s):  
Hyunmi Lim ◽  
Jeonghun Ku
Author(s):  
Gloria Pizzamiglio ◽  
Zuo Zhang ◽  
James Kolasinski ◽  
Jane M. Riddoch ◽  
Richard E. Passingham ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1466 ◽  
Author(s):  
Hyoseon Choi ◽  
Hyunmi Lim ◽  
Joon Woo Kim ◽  
Youn Joo Kang ◽  
Jeonghun Ku

Action observation (AO), based on the mirror neuron theory, is a promising strategy to promote motor cortical activation in neurorehabilitation. Brain computer interface (BCI) can detect a user’s intention and provide them with brain state-dependent feedback to assist with patient rehabilitation. We investigated the effects of a combined BCI-AO game on power of mu band attenuation in stroke patients. Nineteen patients with subacute stroke were recruited. A BCI-AO game provided real-time feedback to participants regarding their attention to a flickering action video using steady-state visual-evoked potentials. All participants watched a video of repetitive grasping actions under two conditions: (1) BCI-AO game and (2) conventional AO, in random order. In the BCI-AO game, feedback on participants’ observation scores and observation time was provided. In conventional AO, a non-flickering video and no feedback were provided. The magnitude of mu suppression in the central motor, temporal, parietal, and occipital areas was significantly higher in the BCI-AO game than in the conventional AO. The magnitude of mu suppression was significantly higher in the BCI-AO game than in the conventional AO both in the affected and unaffected hemispheres. These results support the facilitatory effects of the BCI-AO game on mu suppression over conventional AO.


2013 ◽  
Vol 35 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Miyuki Tamura ◽  
Yoshiya Moriguchi ◽  
Shigekazu Higuchi ◽  
Akiko Hida ◽  
Minori Enomoto ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 64-80 ◽  
Author(s):  
Daniel J. Shaw ◽  
Marie-Helene Grosbras ◽  
Gabriel Leonard ◽  
G. Bruce Pike ◽  
Tomáš Paus

2011 ◽  
Vol 22 (3) ◽  
pp. 668-679 ◽  
Author(s):  
Luca Turella ◽  
Federico Tubaldi ◽  
Michael Erb ◽  
Wolfgang Grodd ◽  
Umberto Castiello

Author(s):  
Davide Albertini ◽  
Marco Lanzilotto ◽  
Monica Maranesi ◽  
Luca Bonini

The neural processing of others' observed actions recruits a large network of brain regions (the action observation network, AON), in which frontal motor areas are thought to play a crucial role. Since the discovery of mirror neurons (MNs) in the ventral premotor cortex, it has been assumed that their activation was conditional upon the presentation of biological rather than nonbiological motion stimuli, supporting a form of direct visuomotor matching. Nonetheless, nonbiological observed movements have rarely been used as control stimuli to evaluate visual specificity, thereby leaving the issue of similarity among neural codes for executed actions and biological or nonbiological observed movements unresolved. Here, we addressed this issue by recording from two nodes of the AON that are attracting increasing interest, namely the ventro-rostral part of the dorsal premotor area F2 and the mesial pre-supplementary motor area F6 of macaques while they 1) executed a reaching-grasping task, 2) observed an experimenter performing the task, and 3) observed a nonbiological effector moving in the same context. Our findings revealed stronger neuronal responses to the observation of biological than nonbiological movement, but biological and nonbiological visual stimuli produced highly similar neural dynamics and relied on largely shared neural codes, which in turn remarkably differed from those associated with executed actions. These results indicate that, in highly familiar contexts, visuo-motor remapping processes in premotor areas hosting MNs are more complex and flexible than predicted by a direct visuomotor matching hypothesis.


2009 ◽  
Vol 20 (2) ◽  
pp. 486-491 ◽  
Author(s):  
A. A. Sokolov ◽  
A. Gharabaghi ◽  
M. S. Tatagiba ◽  
M. Pavlova

Sign in / Sign up

Export Citation Format

Share Document