Synthesis of Zinc Oxide/Activated Carbon Nano-Composites and Photodegradation of Rhodamine B

2012 ◽  
Vol 29 (6) ◽  
pp. 392-398 ◽  
Author(s):  
Jing Chen ◽  
Xinlan Wen ◽  
Xiaobao Shi ◽  
Rongkan Pan
2021 ◽  
Author(s):  
Aschalew Tadesse ◽  
Mebrahtu Hagos Kahsay ◽  
Neway Belachew ◽  
H C Ananda Murthy ◽  
Basavaiah Keloth

In order to explore an alternative photocatalyst for environmental remediation, we report the two-step process to synthesise the zinc oxide/nitrogen doped carbon quantum dots nanocomposites (ZnO@NCQDs NCs). In the first...


2020 ◽  
Vol 32 (5) ◽  
pp. 1121-1127
Author(s):  
Mahesh Kumar Gupta ◽  
P.K. Tandon ◽  
Neelam Shukla ◽  
Harendra Singh ◽  
Shalini Srivastava

Acid activated carbon obtained from cheap, non-toxic and locally available banana peel was used as a low cost and efficient adsorbent for the removal of dyes methyl orange and rhodamine-B from the aqueous solution. Changes in the resulting material before and after activation and after treatment were studied by different techniques, such as SEM-EDX, XRD, FTIR measurements. Effects of duration of treatment, amount of banana peel activated carbon, pH, and initial methyl orange and rhodamine-B concentration, on the removal of dye were studied to get optimum conditions for maximum dye removal. Removal efficiency of the activated ash remains almost constant in a wide range of pH from 2.5 to 5.6. In 75 min at room temperature removal of 98.5 % methyl orange (anionic) and 99.0 % rhodamine-B (cationic) dyes with 0.1 g and 0.125 g, respectively was obtained from the contaminated water having 10 ppm dye concentration.


2016 ◽  
Vol 19 (3) ◽  
pp. 1600611 ◽  
Author(s):  
Erwan Castanet ◽  
Mohamed Al Thamish ◽  
Nishar Hameed ◽  
Andrew Krajewski ◽  
Ludovic F. Dumée ◽  
...  

2021 ◽  
Vol 8 (2) ◽  
pp. 1034-1044
Author(s):  
Prabhavathy S ◽  
◽  
Arivuoli Dakshanamoorthy ◽  
Keyword(s):  

2021 ◽  
Vol 16 (1) ◽  
pp. 136-147
Author(s):  
Allwar Allwar ◽  
Asih Setyani ◽  
Ulul Sugesti ◽  
Khusna Afifah Fauzani

Oil palm shell was used as a precursor for preparation of activated carbon using different chemical activations (potassium hydroxide (KOH), zinc chloride (ZNCl2), and phosphoric acid (H3PO4)). Each activated carbons (AC) was mixed with nano-zinc oxide to form a composite. From the gas sorption analyzer, it is showed that nitrogen adsorption isotherms show Type II for ZnO/AC-KOH and ZnO/AC-ZnCl2 corresponding to the micro- and mesoporous structures, respectively. However, the nitrogen adsorption isotherm of ZnO/AC-H3PO4 exhibits the Type I with predominantly microporous structures. The SEM micrographs produced unsmooth surface and different pore sizes. The XRD patterns at 2θ of 25.06° and 26.75° were come from amorphous activated carbon. The peak intensity of ZnO was weak due to low concentration of zinc precursor. However, the ZnO of ZnO/AC-ZnCl2 showed strongly peak intensity. The effectiveness of the composites was examined for phenol removal determined by UV-Vis Spectrophotometer method. The equilibrium adsorption follows the Langmuir and Freundlich models according to the best correlation coefficient (R2). The kinetic model was only obtained for the pseudo-second-order with the best linearity of the correlation coefficient (R2). The results of this study showed that the oil palm shell has a great potential for ZnO/AC with excellent adsorptive property. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 


Sign in / Sign up

Export Citation Format

Share Document