Gene Therapy Targeting Peripheral Blood CD34+Hematopoietic Stem Cells of HIV-infected Individuals

1997 ◽  
Vol 8 (18) ◽  
pp. 2229-2238 ◽  
Author(s):  
A. Gervaix ◽  
L. Schwarz ◽  
P. Law ◽  
A. D. Ho ◽  
D. Looney ◽  
...  
2017 ◽  
Vol 89 (7) ◽  
pp. 18-24 ◽  
Author(s):  
I V Galtseva ◽  
Yu O Davydova ◽  
T V Gaponova ◽  
N M Kapranov ◽  
L A Kuzmina ◽  
...  

Aim. To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. Subjects and methods. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). Results. There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. Conclusion. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.


Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3381-3386 ◽  
Author(s):  
GM Prince ◽  
M Nguyen ◽  
HM Lazarus ◽  
RA Brodsky ◽  
LW Terstappen ◽  
...  

Paroxysmal nocturnal hemoglobinuria (PNH) arises from somatic mutation of a bone marrow progenitor that disrupts glycosylinositol phospholipid (GPI) anchoring of cell surface proteins. We recently characterized the expression of GPI-anchored decay acclerating factor (DAF) and CD59 during hematopoietic development in PNH marrow. We found that, although a subset of early hematopoietic precursors identified by the CD34+CD38- phenotype exhibits normal DAF and CD59 expression, DAF and CD59 are absent on the majority of CD34+CD38- cells. Pluripotent CD34+CD38- hematopoietic stem cells normally circulate in the peripheral blood and can be collected by apheresis, cryopreserved, and later used for reconstitution of hematopoiesis. In this study, we examined the phenotypes of CD34+ cells that are released into the blood of PNH patients. Analyses of apheresis samples from three affected individuals showed discrete populations of circulating DAF+CD59+CD34+ and DAF-CD59- CD34+ cells. Variable proportions of CD34+CD38- cells were present within the peripheral blood CD34+ cells of each patient, but in all three cases the DAF+CD59+CD34+CD38- cell subset subset. Because CD34+ cells lacking CD38 antigen are highly enriched for self-renewing hematopoietic stem cells, these findings indicate that apheresis samples can serve as a source of unaffected stem cells for autologous marrow transplantation of PNH patients.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 199-199 ◽  
Author(s):  
Marion G. Ott ◽  
Manfred Schmidt ◽  
Stefan Stein ◽  
Kerstin Schwarzwaelder ◽  
Ulrich Siler ◽  
...  

Abstract Gene transfer into hematopoietic stem cells has been successfully used to correct immunodeficiencies affecting the lymphoid compartment. However, similar results have not been reported for diseases affecting myeloid cells, mainly due to low engraftment levels of gene-modified cells observed in unconditioned patients. Here we report on two adult patients (P1 and P2, follow up >24 months) and one child (P3, 6 years, follow up 15 months) who received gene-transduced hematopoietic stem cells in combination with nonmyeloablative bone marrow conditioning for the treatment of X-linked Chronic Granulomatous Disease (X-CGD), a primary immunodeficiency caused by a defect in the oxidative antimicrobial activity of phagocytes. Therapeutically significant gene marking was detected in neutrophils of both adult patients (P1 and P2) leading to large numbers (up to 60%) of functionally corrected phagocytes 24 months after gene therapy. This high correction resulted from an unexpected but temporarily restricted expansion of gene transduced myeloid cells in vivo. In contrast gene marking and functionally reconstitution levels in P3 have been low (1–2%). Both adult patients suffered from active infections prior to gene therapy (P1 of bacterial liver abscesses and P2 of lung aspergillosis) and were free of severe bacterial and fungal infections until 24 months after transplantation. P3 suffered from an Aspergillus infection of the spinal cord with paraparesis before transplantation and recovered after gene therapy despite low numbers of functionally corrected cells in the peripheral blood. Large-scale mapping of retroviral integration site distribution revealed that activating insertions in the zinc finger transcription factor homologs MDS1/EVI1, PRDM16, or in SETBP1 have expanded gene-corrected long term myelopoiesis 3- to 4-fold in both adults, providing direct evidence in humans that these genes may influence regulation of normal long-term hematopoiesis. The hematopoietic repopulation in P1 was polyclonal until 18 months after therapy. P1 died of a severe bacterial sepsis after colon perforation 27 months after gene therapy. No evidence of malignant transformation was found in peripheral blood or bone marrow aspirates from this patient. Gene marking at death was still 60%; however the function of gene transduced cells, the number of corrected cell clones and the activity of a predominant clone was greatly decreased. P2 has been free of infections since transplantation (last monitoring: month 26). Hematopoietic repopulation was polyclonal in P2 until day 560. In conclusion, gene therapy in combination with bone marrow conditioning has provided a transitory therapeutic benefit for all 3 patients. Further improvements in vector design and conditioning regimes are under investigation to provide a stable and long term correction of the disease.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 456-456
Author(s):  
Johan Richter ◽  
Maria Johansson ◽  
Teun J. de Vries ◽  
Mats Ehinger ◽  
Vince Everts ◽  
...  

Abstract Infantile malignant osteopeterosis (IMO) is a progressive, rare autosomal recessive disorder affecting osteoclast function. 50% of the affected children have a mutation in the Tcirg1 gene coding for one subunit of an osteoclast specific proton pump, OC116. The non-resorbed dense, sclerotic bones cause symptoms including pancytopenia and progressive visual loss and ultimately death. So far, the only curative treatment is hematopoietic stem cell (HSC) transplantation. The oc/oc mouse has a mutation in the gene homologous to Tcirg1 giving rise to similar symptoms as in patients leading to death of the mice at the age of 3–4 weeks. We have previously shown that the oc/oc mouse can be successfully treated with neonatal transplantation of normal HSC leading to prolonged survival and reversal of osteopetrosis (M. Johansson et al., Exp. Hematology34;242, 2006). In the current study we set out to develop HSC directed gene therapy for osteopetrosis in the oc/oc mouse model. As the bone marrow compartment is severely reduced in the oc/oc mouse fetal liver (FL) cells depleted of Ter119+ erythroid cells were used as a source of hematopoietic stem cells. We first established that wild type Ter119 depleted FL cells marked with a GFP vector and transplanted to newborn oc/oc mice i.p. could correct the osteopetrotic phenotype just as was shown for fresh bone marrow cells previously. Subsequently, Ter119 depleted FL cells from oc/oc mice were transduced with a retroviral vector expressing OC116 and GFP. In vitro transduction efficiency was 60–85%. One-day-old oc/oc mice were irradiated (400cGy) and transplanted i.p. with the transduced FL cells (1–3.5x106). 7 out of 14 mice survived past the expected lifespan and had 8–53% GFP+ cells in the peripheral blood at 3, 6 and 12 weeks. Analysis of bone structure with X-ray and histopathology showed an improvement at 8 weeks and an almost normal structure at 18 weeks, indicating induction of osteoclast activity. In vitro culture of osteoclasts from bone marrow from transplanted animals on bovine bone slices showed GFP marked osteoclasts and bone resorption, albeit at lower levels than for wild type cells. In the oc/oc mouse there is a block in B-lymphopoiesis leading to a reduced number of B-lymphocytes in the peripheral blood. In treated mice a reversal of this deficiency was observed. In summary we have demonstrated that the osteoclast defect seen in oc/oc mice can be successfully corrected by neonatal transplantation of gene modified hematopoietic stem cells and that this can lead to long-term survival of treated mice. This represents a significant step towards the development of gene therapy for osteopetrosis.


2013 ◽  
Vol 11 (1) ◽  
pp. 625-633 ◽  
Author(s):  
Philippe Brunet de la Grange ◽  
Marija Vlaski ◽  
Pascale Duchez ◽  
Jean Chevaleyre ◽  
Veronique Lapostolle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document