scholarly journals Absolute numbers of peripheral blood CD34+ hematopoietic stem cells prior to a leukapheresis procedure as a parameter predicting the efficiency of stem cell collection

2017 ◽  
Vol 89 (7) ◽  
pp. 18-24 ◽  
Author(s):  
I V Galtseva ◽  
Yu O Davydova ◽  
T V Gaponova ◽  
N M Kapranov ◽  
L A Kuzmina ◽  
...  

Aim. To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. Subjects and methods. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). Results. There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. Conclusion. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.

Blood ◽  
1995 ◽  
Vol 86 (9) ◽  
pp. 3381-3386 ◽  
Author(s):  
GM Prince ◽  
M Nguyen ◽  
HM Lazarus ◽  
RA Brodsky ◽  
LW Terstappen ◽  
...  

Paroxysmal nocturnal hemoglobinuria (PNH) arises from somatic mutation of a bone marrow progenitor that disrupts glycosylinositol phospholipid (GPI) anchoring of cell surface proteins. We recently characterized the expression of GPI-anchored decay acclerating factor (DAF) and CD59 during hematopoietic development in PNH marrow. We found that, although a subset of early hematopoietic precursors identified by the CD34+CD38- phenotype exhibits normal DAF and CD59 expression, DAF and CD59 are absent on the majority of CD34+CD38- cells. Pluripotent CD34+CD38- hematopoietic stem cells normally circulate in the peripheral blood and can be collected by apheresis, cryopreserved, and later used for reconstitution of hematopoiesis. In this study, we examined the phenotypes of CD34+ cells that are released into the blood of PNH patients. Analyses of apheresis samples from three affected individuals showed discrete populations of circulating DAF+CD59+CD34+ and DAF-CD59- CD34+ cells. Variable proportions of CD34+CD38- cells were present within the peripheral blood CD34+ cells of each patient, but in all three cases the DAF+CD59+CD34+CD38- cell subset subset. Because CD34+ cells lacking CD38 antigen are highly enriched for self-renewing hematopoietic stem cells, these findings indicate that apheresis samples can serve as a source of unaffected stem cells for autologous marrow transplantation of PNH patients.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 17527-17527
Author(s):  
H. Lannert ◽  
T. Able ◽  
S. Leicht ◽  
R. Saffrich ◽  
V. Eckstein ◽  
...  

17527 Background: Stathmin/Op18 is a cytosolic phosphoprotein which regulates the dynamics of microtubules. This regulation is important in mitosis during cell division and in the migration of cells in modification of the cytoskeleton. The process of tumor proliferation and metastasis is characterized by high rates of mitosis and migration into distant tissues. Stathmin itself is regulated by kinases through phosphorylation of mainly 4 different serin sides. In this study, we investigated stathmin- and its kinases expression in native hematopoietic CD34+ stem cells (HSCs) from bone marrow (BM) in comparison to mobilized peripheral blood stem cells (mPBSCs) from G-CSF stimulated donors and leukemic CD34+ cells from patients with AML. Methods: Mononuclear cells were isolated by a standard Ficoll-Hypaque gradient separation method from the different blood sources. An Auto-MACS (Miltenyi) and FACS Vantage SE cell sorter (Becton Dickinson) was used to highly enrich (>99%) CD34+ cells fractions. In comparative proteome analysis, we detected the protein expression of stathmin in mPBSCs, AML CD34+ cells, and in native HSCs from BM. We performed microarray-based gene expression profiles of these cells and focused on kinases regulating stathmin’s activity. Furthermore, we monitored stathmin and its relevant kinases by FACS analyses of the enriched cell fractions and by fluorescence microscopy of bone marrow smears and cytospins. Results: In this study, we have shown in comparative proteome analysis (Q-TOF-MS/MS) that stathmin is expressed in G-CSF mobilized hematopoietic stem cells for the first time and in AML cells. In microarray analysis we indentified up- and down-regulated kinases: MAPK, PAK1, PKC beta/zeta, MEKK3 and CDKs. Accordingly, we demonstrated in FACS analyses and in immunofluorescence microscopy the high intracellular expression of PKCzeta in AML cells and MEKK3 as well PAK1 in mPBSCs. Conclusions: Our findings show that G-CSF stimulates Stathmin expression in mPBSCs and plays a key role in migration into peripheral blood. Furthermore, we show the different expression of kinases acting on stathmin in mPBSCs and AML cells. Consequently, stathmin and its relevant kinases promise to become a future target in therapies of malignant processes. No significant financial relationships to disclose.


1997 ◽  
Vol 8 (18) ◽  
pp. 2229-2238 ◽  
Author(s):  
A. Gervaix ◽  
L. Schwarz ◽  
P. Law ◽  
A. D. Ho ◽  
D. Looney ◽  
...  

2020 ◽  
Vol 19 (2) ◽  
pp. 152-159
Author(s):  
E. E. Kurnikova ◽  
I. G. Khamin ◽  
V. V. Shchukin ◽  
T. V. Shamanskaya ◽  
M. S. Fadeeva ◽  
...  

Polychemotherapy, accompanied by autologous hematopoietic stem cell transplantation, can improve the results of long-term survival of patients with cancer and some non-cancer diseases. Mobilizing and collecting hematopoietic stem cells in children with very low body weight can be a difficult task. The study was approved by the Independent Ethics Committee and the Scientific Council of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology. 19 children with extremely low body weight was included in the current study. The median age was 8 (5–14) months, the median of body weight 7.5 (5.8–8.8) kg. Apheresis was performed in an ICU, using sedative therapy and in compliance with the conditions for the prevention of anemia, hypovolemia, hypothermia. 19 hematopoietic stem cell apheresis were performed using the Spectra Optia MNC separator program. Mobilization of CD34+ cells was performed with filgrastim; three children were additionally given plerixaphor. All 19 hematopoietic stem cell apheresis were successful: the median of collected CD34+ cells was 18.7 × 106/kg (8.6– 60.6 × 106/kg), the median apheresis duration was 204 (161–351) min. Serious side effects during apheresis were not recorded, however, in 6 children (31%) we encountered difficulties in the process of installing central venous access. The collection of hematopoietic stem cells for the future high-dose chemotherapy with autologous hematopoietic stem cells is a feasible task even for very young children with extremely low body weight. Correct preparation for manipulation, taking into account all possible risk factors and technical features, can avoid serious complications.


2017 ◽  
Vol 2017 ◽  
pp. 1
Author(s):  
Rada Grubovic ◽  
Borce Georgievski ◽  
Lidija Cevreska ◽  
Sonja Genadieva-Stavric ◽  
Milos R. Grubovic

BACKGROUND: Peripheral blood hematopoietic stem cells (PBSC) have largely replaced bone marrow derived stem cells in autologous transplantations, and have become the preferred source of stem cells in the majority of allogeneic transplantations. Sufficient number of mobilized and collected hematopoietic stem cells (HSC) is needed for successful hematopoietic stem cell transplantation.MATERIAL AND METHOD: This study was performed in the Institute for Transfusion Medicine of RM and the University Clinic of Hematology from 2008 till 2016. There were 30 allogeneic and 90 autologous donors that underwent mobilization and collection of PBSC. The association between possible predictive factors such as demographic characteristics, laboratory parameters and collection parameters in both groups, and mobilization strategy and clinical characteristics in autologous donors and number of collected PBSC was analyzed.RESULTS: There were 226 apheresis, 182 in autologous donors (mean 2, range 1-3) and 44 apheresis in 30 allogeneic donors (mean 1.5, range 1-2). The mean number of collected MNC in autologous donors was 3.09 x 108/kg and 2.85 x 106/kg CD34+ cells, and 3.23 x 108/kg MNC and 3.20 x 106/kg CD34+ cells in allogeneic donors. Significantly larger number of MNC and CD34+ cells was collected with the WBC set. There was a statistically significant correlation between the total number of collected MNC in autologous donors and platelet count before mobilization, the number of cycles in one apheresis procedure, quantity of collected graft and the number of collected MNC and CD34+ cells on the first day of harvestration. There was a statistically significant correlation between the total number of collected MNC in allogeneic donors and platelet count before mobilization, the number of cycles in one apheresis procedure, quantity of collected graft and number of MNC on first day of harvestration. There was a strong correlation between the number of collected MNC and CD34+ cells on the first harvest and the total number of collected MNC and CD34+ cells in poor mobilizers, and inverse correlation with the number of apheresis procedures. Donors who donated MNC ≤ 0.7 x 108/kg and/or ≤ 0.7 x 106/kg CD34+ cells on the first harvest (84.6%) were strong predictors of poor mobilizers.CONCLUSION: Determining the proper level of baseline and preaheresis laboratory parameters for initiating mobilization and apheresis procedure which is safe for donors and greatly efficient in collection of PBSC is needed for optimization of these procedures, as well as for early intervention in poor mobilizers.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3169-3169
Author(s):  
Mehreen Hai ◽  
Thomas R. Bauer ◽  
Yu-chen Gu ◽  
Laura M. Tuschong ◽  
Robert A. Sokolic ◽  
...  

Abstract Background: Canine leukocyte adhesion deficiency (CLAD) represents a disease-specific, large-animal model for the human disease leukocyte adhesion deficiency (LAD). Puppies with CLAD, like children with LAD, experience recurrent life-threatening bacterial infections due to the inability of their leukocytes to adhere and migrate to sites of infection. Mutations in the gene encoding the leukocyte integrin CD18 are responsible for both CLAD and LAD. Allogeneic bone marrow or hematopoietic stem cell transplantation is currently the only curative therapy for LAD. We recently reported the results of non-myeloablative allogeneic transplants in CLAD dogs and showed that very low levels of CD18+ donor-derived neutrophils (less than 300/microliter) were sufficient to reverse the CLAD disease phenotype. These results indicated that CLAD dogs may be amenable to treatment using gene therapy, where there are frequently low numbers of transduced cells. We report the results of retroviral- mediated transduction in autologous hematopoietic stem cells with the canine CD18 gene. Method: Bone marrow was harvested and CD34+ selected from four dogs with CLAD at approximately 3–4 months of age. The purified CD34+ cells were either used immediately or were frozen and subsequently thawed. Cells were pre-stimulated with cSCF, hFlt3-L, hTPO and cIL-6 for approximately 24 hours, then exposed to two rounds of supernatant from the retroviral vector PG13/MSCV-cCD18 for 24 hours each on recombinant fibronectin. At the end of the transduction, the cells were infused back into the animal that had been conditioned with 200 cGy total body irradiation. Post-transplant immunosuppression consisted of cyclosporine given at a dose of 30 mg/kg from day -1 to day 35, then 15 mg/kg from day 36 to day 60, and mycophenolate mofetil at a dose of 20 mg/kg from day 0 to day 28. Peripheral blood samples, as well as pus samples from one animal, were analyzed by flow cytometry at designated time points post-transplant. Results: The four dogs who received autologous, gene-corrected cells have been followed for 7–12 weeks post-infusion. The number of CD18+ CD34+ cells infused per dog ranged from 0.2 to 0.55 x 106 cells/kg. The post-infusion percentage of CD18+ neutrophils in each dog was 0.09%, 0.13%, 0.62% and 0.02% at 12, 10, 8 and 6 weeks respectively. Clinically all four treated CLAD dogs are alive with marked improvement of their CLAD disease. These dogs are now 6–7 months of age. These results contrast with those seen in untreated CLAD dogs who uniformly die or are euthanized within the first few months of life. The reversal of the severe CLAD phenotype despite the very low levels of CD18+ neutrophils in the peripheral blood is likely due to the selective egress of CD18+ neutrophils into the tissue since one treated CLAD dog who had less than 1% CD18+ neutrophils in the blood had nearly 10% CD18+ neutrophils in pus collected from an inflammatory dental lesion. Conclusion: These data suggest that a non-myeloablative conditioning regimen coupled with a minimal immunosuppressive regimen may enable sufficient CD18+ autologous gene-corrected cells to engraft and result in reversal of the severe CLAD phenotype.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5274-5274
Author(s):  
Jan Styczynski ◽  
Robert Debski ◽  
Hanna Gornicka ◽  
Elzbieta Hulek ◽  
Pawel Wojtylak ◽  
...  

Abstract Objective: Analysis of efficacy of PBSC collection after mobilization by high-dose G-CSF in children and young adults, qualified for transplantation of autologous hematopoietic stem cells. Patients and Methods: Total number of 21 patients (23 collection cycles) were included into the study, divided into 2 groups: group I of 10 patients (aged 16m-23y, weight 8.5–61kg) with solid tumors were mobilized with G-CSF (Neupogen) at dose 2x5 μg/kg bw/day (12 collection cycles); group II of 11 patients (aged 3–27y, weight 12.5–68kg) with solid tumors (n=6) or hematological malignancies (n=5), who were mobilized with G-CSF (Neupogen) at dose 2x12 μg/kg bw/day. PBSC collections were performed by COBE Spectra from the day when CD34 cell count exceeded 20/μl. Efficacy of procedure was determined by collection of total 2x106 CD34 cells/kg (minimal required cell dose), or 5x106 CD34 cells/kg (optimal cell dose). Results: Group I: Peripheral blood CD34 cell count exceeded 20/μl in 7/12 (58%) patients at day 4 and 10/12 (83%) at day 6 of G-CSF administration. Total number of CD34 cells of 2x106 /kg kw and 5x106 /kg bw was obtained in 3/12 (25%) and 2/12 (17%) patients after first collection respectively; and in 8/12 (67%) and 4/12 (33%) after second collection, respectively. After 3 days of collection required number of cells was obtained in 9/12 (75%) and 6/12 (50%) patients, respectively. No patient reported side-effects related to G-CSF administration. Group II: Peripheral blood CD34 cell count exceeded 20/μl in 8/11 (73%) patients at day 4 and 11/11 at day 6 of G-CSF administration. Total number of CD34 cells of 2x106 /kg bw and 5x106 /kg bw was obtained in 9/11 (82%) and 3/11 (27%) patients after first collection respectively; and in 11/11 and 6/11 (55%) after second collection, respectively. After 3 days of collection, in all patients, but one, optimal number of cells was obtained. Two patients reported side-effects related to G-CSF administration (headache, bone pain). No differences were found between the rate of speed of PBSC mobilization in analyzed schemes of G-CSF administration, however group of patients mobilized with high-dose G-CSF, showed more efficient stem cell collection after 3 days of procedure (p=0.027; OR=14; 95%CI=1.1–402). Conclusion: Mobilization of PBSC with high-dose G-CSF is a safe and effective method of hematopoietic stem cell collection, enabling high efficacy of this procedure.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4709-4709 ◽  
Author(s):  
Maria Rosa Lidonnici ◽  
Annamaria Aprile ◽  
Marta Frittoli ◽  
Giacomo Mandelli ◽  
Ylenia Paleari ◽  
...  

Abstract Over the past decades outcomes of clinical hematopoietic stem cell transplants have established a clear relationship between the sources of hematopoietic stem cells (HSCs) infused and their differential homing and engraftment properties. For a long time, bone marrow (BM) harvest has been the preferred source of hematopoietic stem and progenitor cells (HSPCs) for hematopoietic reconstitution following myeloablative conditioning regimen. At present, mobilized peripheral blood (PB) is commonly used for hematopoietic cells transplantation in both adults and children, particularly in the autologous setting, and it has progressively replaced BM as the source of HSCs.HSCs are maintained in their niche by binding to cellular determinants through adhesion molecules and diverse strategies are currently used to promote their egress from BM to PB. Traditionally, the growth factor granulocyte-colony stimulating factor (G-CSF) represents the gold standard agent to mobilize HSPCs for transplantation. Nevertheless, other compounds have been recently tested. One of the most successful mobilizing agents is Plerixafor (AMD3100, Mozobil™), a bicyclam molecule that selectively and reversibly antagonizes the binding of stromal cell derived factor-1 (SDF-1), located on the surface of BM stromal cells and osteoclasts, to chemokine CXC-receptor-4 (CXCR4), located on the surface of HSPCs, with the subsequent mobilization in the blood. The use of this drug is currently approved by FDA and EMA in combination with G-CSF, in patients affected by lymphoma or multiple myeloma whose cells mobilize poorly with G-CSF alone. Clinical trials demonstrated that Plerixafor alone safely and rapidly mobilizes HSCs also in healthy donors, beta-thalassemia patients and pediatric patients affected by malignancies. Previous characterization studies on non-human primates and human samples of Plerixafor mobilized cells in comparison to cells mobilized by G-CSF alone or in combination with Plerixafor showed a different expression profile, cell composition and engrafting potential in a xenotransplant model. From these studies remains unsolved whether Plerixafor, G-CSF, or their combination mobilizes different primitive HSC populations, defined both by multimarker immunophenotype and in vivo functional analysis. In the present study we investigated by controlled comparative analysis the functional and molecular hallmarks of human HSCs collected from BM, G-CSF and/or Plerixafor mobilized peripheral blood. We show that Plerixafor alone mobilizes preferentially long-term hematopoietic stem cells (LT-HSCs), defined as CD34+CD38/lowCD90+CD45RA-CD49f+ cells and primitive populations of HSCs. These cells possess higher ability to home to hematopoietic niches and engraft in NOD/SCID/IL2rγnull (NSG) mice, resulting in enriched scid-repopulating cell frequency, in comparison to other sources. The higher content of CXCR4+ and CD49f+ cells correlates with this feature. Furthermore, global gene expression profiling highlights the superior in vivo reconstitution activity of Plerixafor mobilized cells. The "stemness" signature of cells dislodged from their niche by the drug is attenuated by the combined use with G-CSF, which emphasizes the gene expression profile induced by G-CSF treatment. These data indicate that a qualitative advantage accounts for the superior performance of Plerixafor mobilized cells. These findings provide the rationale for using a suboptimal dose of more primitive HSCs when target cell number for transplantation is limited, or when G-CSF mobilization is too risky like in sickle cell anemia patients. Moreover, CD34+ cells mobilized by Plerixafor alone or with the combination of G-CSF are efficiently transduced by a lentiviral vector encoding for human ß-globin gene (GLOBE LV) and are able to engraft and differentiate in vivo, supporting their use for gene therapy applications. Disclosures Ciceri: MolMed SpA: Consultancy.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1188-1188
Author(s):  
Fumihito Tajima ◽  
Yuki Nakamura ◽  
Yoshikazu Murawaki ◽  
Goshi Shiota

Abstract How hematopoietic stem cells (HSC) in bone marrow (BM) contribute to liver regeneration remains to be resolved. The mechanisms which mobilize HSC from BM to peripheral blood (PB) and govern their homing to the liver are unknown. Hepatocyte growth factor (HGF) is locally and generally increased following liver injury, suggesting that it promotes proliferation, adhesion, and survival of hepatocytes. PB stem cells mobilized by cytokines are widely used for clinical transplantation. However, it is not known if HGF can mobilize HSC to PB or if it has the capability to differentiate HSC into hepatocytes. In this study we examined whether HGF can mobilize HSC from BM to PB using the murine stem cell transplantation model. First, we found that HGF transgenic mice, which have high serum levels of HGF concentration, had many colony-forming cells in PB, suggesting HGF increases circulation of HSC and progenitor cells. After determining through RT-PCR analysis that lineage (Lin) − BM cells express the tyrosine kinase receptor c-MET, we speculated that the c-MET-HGF axis modulates the recruitment of HSC from BM to PB. We also examined the effects of exogenous HGF in mobilizing stem cells from BM to PB. To determine whether HGF can mobilize HSC to PB, we investigated the expression of CD34 using flow cytometric analysis. The CD34+ cells in PB mobilized by HGF increased in a dose-dependent pattern and reached a plateau at 0.1mg/kg of recombinant HGF administration. Significant increases in CD34+ cells in PB were noted at 3h after HGF infusion. The continual administration of HGF every 24h increased the CD34+ cells in PB to maximum levels at 4 days. Finally, the absolute number of CD34+ cells in PB after HGF administration was as much as the number of those cells after administration at 12-hour intervals subcutaneously with 0.125mg/kg of recombinant human granulocyte-colony stimulating factor (G-CSF) for 4 consecutive days. To investigate engraftment of the mobilized cells to BM, 0.1mg/kg HGF was injected into Ly-5.1 mice every 24h for 4 days. Lin− cells in PB were collected 3h after the last injection of HGF and then injected into lethally-irradiated Ly-5.2 C57BL/6 mice. Two months after transplantation, the level of engraftment was assessed by analysis of donor (Ly-5.1) cells in the nucleated cells of the PB of recipient mice. The mean percentage of donor cells of mice transplanted with Lin− cells from HGF-treated mice was 1.8%, whereas that of the mice transplanted with untreated PB cells was 0%. Multilineage engraftment was confirmed by the presence of the Thy-1+ cells, B220+ cells, and Mac-1/Gr-1+ cells. When we tested the CD34 expression of the stem cells transplanted, the majority of the cells expressed CD34. Then we tracked single Lin−, Sca-1+, c-kit+, CD34+ PB cells from G-CSF-treated transgenic-enhanced green fluorescent protein (EGFP) mice that were injected into spleen of the CCl4-induced liver-injured B6 mice along with 500 Lin−, Sca-1+, c-kit+, CD34+ PB cells from G-CSF-treated normal B6 mice. Two months later, donor-derived GFP+ cells were identified among recipient hepatocytes in liver-injured mice using immunohistochemistry for GFP. These findings demonstrate that stem cells with long-term engraftment capabilities can be mobilized by HGF, and that HSC in PB mobilized by HGF are capable of differentiating into hepatocytes, suggesting HGF contributes to liver regeneration partly by mobilizing HSC to PB.


Sign in / Sign up

Export Citation Format

Share Document