Stimulation of Innate Immune Responses by CpG Oligodeoxynucleotide in Newborn Lambs Can Reduce Bovine Herpesvirus-1 Shedding

2006 ◽  
Vol 16 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Anil K. Nichani ◽  
Angelo Mena ◽  
Radhey S. Kaushik ◽  
George K. Mutwiri ◽  
Hugh G.G. Townsend ◽  
...  
1993 ◽  
Vol 6 (2) ◽  
pp. 109-117 ◽  
Author(s):  
D.J. ORTEN ◽  
W. XUE ◽  
S. VAN DRUNEN LITTEL-VAN DEN HURK ◽  
O.Y. ABDELMAGID ◽  
D.N. REDDY ◽  
...  

2001 ◽  
Vol 78 (4) ◽  
pp. 293-305 ◽  
Author(s):  
Praveen K. Gupta ◽  
Mohini Saini ◽  
L.K. Gupta ◽  
V.D.P. Rao ◽  
S.K. Bandyopadhyay ◽  
...  

2006 ◽  
Vol 24 (36) ◽  
pp. 5716-5724 ◽  
Author(s):  
Mikhail Pashenkov ◽  
Gerda Goëss ◽  
Christine Wagner ◽  
Markus Hörmann ◽  
Tamara Jandl ◽  
...  

Purpose The recent identification of toll-like receptors (TLRs) and respective ligands allows the evaluation of novel dendritic cell (DC) –activating strategies. Stimulation of TLR9 directly activates human plasmacytoid DCs (PDCs) and indirectly induces potent innate immune responses in preclinical tumor models. We performed an open-label, multicenter, single-arm, phase II pilot trial with a TLR9-stimulating oligodeoxynucleotide in melanoma patients. Patients and Methods Patients with unresectable stage IIIb/c or stage IV melanoma received 6 mg PF-3512676 weekly by subcutaneous injection for 24 weeks or until disease progression to evaluate safety as well as clinical and immunologic activity. Clinical and laboratory safety assessments were performed weekly; blood samples for immunological measurements were taken every 8 weeks. Tumor measurements were performed according to Response Evaluation Criteria in Solid Tumors. Results Twenty patients received PF-3512676 for a mean of 10.9 weeks with a mean of 10.7 injections. Laboratory and nonlaboratory adverse events were limited, transient, and did not result in any withdrawals. Two patients experienced a confirmed partial response; one response is ongoing for 140+ weeks. Three patients experienced stable disease. Immunologic measurements revealed induction of an activated phenotype of PDC, elevation of serum levels of 2′,5′-oligoadenylate, a surrogate marker of type I interferon production, and significant stimulation of natural killer cell cytotoxicity (the latter was associated with clinical benefit). Conclusion These results indicate that TLR9-targeted therapy can stimulate innate immune responses in cancer patients, identify biomarkers that may be associated with TLR9-induced tumor regression, and encourage the design of follow-up studies to evaluate the ability of this therapeutic approach to target human cancer.


2016 ◽  
Vol 90 (18) ◽  
pp. 8090-8104 ◽  
Author(s):  
Seong K. Kim ◽  
Akhalesh K. Shakya ◽  
Dennis J. O'Callaghan

ABSTRACTEquine herpesvirus 1 (EHV-1) is a major pathogen affecting equines worldwide. The virus causes respiratory disease, abortion, and, in some cases, neurological disease. EHV-1 strain KyA is attenuated in the mouse and equine, whereas wild-type strain RacL11 induces severe inflammation of the lung, causing infected mice to succumb at 4 to 6 days postinfection. Our previous results showed that KyA immunization protected CBA mice from pathogenic RacL11 challenge at 2 and 4 weeks postimmunization and that KyA infection elicited protective humoral and cell-mediated immune responses. To investigate the protective mechanisms of innate immune responses to KyA, KyA-immunized mice were challenged with RacL11 at various times postvaccination. KyA immunization protected mice from RacL11 challenge at 1 to 7 days postimmunization. Immunized mice lost less than 10% of their body weight and rapidly regained weight. Virus titers in the lungs of KyA-immunized mice were 1,000-fold lower at 2 days post-RacL11 challenge than virus titers in the lungs of nonimmunized mice, indicating accelerated virus clearance. Affymetrix microarray analysis revealed that gamma interferon (IFN-γ) and 16 antiviral interferon-stimulated genes (ISGs) were upregulated 3.1- to 48.2-fold at 8 h postchallenge in the lungs of RacL11-challenged mice that had been immunized with KyA. Murine IFN-γ inhibited EHV-1 infection of murine alveolar macrophages and protected mice against lethal EHV-1 challenge, suggesting that IFN-γ expression is important in mediating the protection elicited by KyA immunization. These results suggest that EHV-1 KyA may be used as a live attenuated EHV-1 vaccine as well as a prophylactic agent in horses.IMPORTANCEViral infection of cells initiates a signal cascade of events that ultimately attempts to limit viral replication and prevent infection through the expression of host antiviral proteins. In this study, we show that EHV-1 KyA immunization effectively protected CBA mice from pathogenic RacL11 challenge at 1 to 7 days postvaccination and increased the expression of IFN-γ and 16 antiviral interferon-stimulated genes (ISGs). The administration of IFN-γ blocked EHV-1 replication in murine alveolar macrophages and mouse lungs and protected mice from lethal challenge. To our knowledge, this is the first report of an attenuated EHV-1 vaccine that protects the animal at 1 to 7 days postimmunization by innate immune responses. Our findings suggested that IFN-γ serves as a novel prophylactic agent and may offer new strategies for the development of anti-EHV-1 agents in the equine.


Sign in / Sign up

Export Citation Format

Share Document