Molecular and Proteomic Characterization of Human Mesenchymal Stem Cells Derived from Amniotic Fluid: Comparison to Bone Marrow Mesenchymal Stem Cells

2007 ◽  
Vol 16 (6) ◽  
pp. 931-952 ◽  
Author(s):  
Maria G. Roubelakis ◽  
Kalliopi I. Pappa ◽  
Vasiliki Bitsika ◽  
Dimitra Zagoura ◽  
Antonia Vlahou ◽  
...  
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4260-4260
Author(s):  
Maria G. Roubelakis ◽  
Kalliopi I. Pappa ◽  
Vassiliki Bitsika ◽  
Dimitra Zagoura ◽  
Antonia Vlahou ◽  
...  

Abstract Human mesenchymal stem cells (hMSCs) constitute a population of multipotent cells, easily expanded in culture and able to give rise to many lineages. These characteristics make MSCs a very attractive tool for developing new strategies for clinical applications based on cell therapy. So far, the most common source of MSCs has been the bone marrow (BM). However, identification and characterization of alternative sources of MSCs is of great importance. One such alternative source is the amniotic fluid (AF), which can be collected during scheduled amniocentesis without any ethical concerns. To this end, in the present study, we introduced an improved protocol for isolating and clonally expanding fetal MSCs from second trimester amniotic fluid (AF) and we further characterized these cells based on their phenotype, pluripotency, differentiation potential and proteomic profile. The AF samples were obtained during routine amniocentesis and AF-MSCs were enriched by a modified culture protocol. The isolated MSCs expanded rapidly and exhibited differentiation potential into adipocytes and osteoblasts. More importantly, we showed that these cells can differentiate in vitro not only into cell types derived from mesoderm (adipocytes and osteoblasts) and ectoderm (neural cells) but also more interestingly into endoderm (hepatocytes) derived cells. Moreover, we documented that AF-MSCs express Oct-4 transcription factor, a marker of pluripotency, and we studied for the first time its expression over different passages by real time PCR and documented that it remained constant for at least 17 doublings. An extensive characterization of the phenotypic features of AF-MSCs by using a wide range of surface markers and flow cytometry, indicated that they are positive for all the mesenchymal stem cell markers such as CD90, CD105, CD73 and CD166 and generally exhibit a similar expression pattern to the BM-MSCs. To characterize these cells in more detail, we established the first proteomic database for human AF-MSCs. Using 2D-gel electrophoresis and matrix-assisted laser desorption ionisation-time of flight-mass (MALDI-TOF) spectrometry approach, we have generated for the first time the protein map of AF MSCs, by identifying 260 proteins and directly compared this protein profile with that of MSCs derived from BM. We further performed a similar analysis for BM-MSCs, identifying 170 different proteins and generating a reference map for these cells. The comparison of the proteomic pattern from both sources was similar. In general, 140 proteins were identified in AF-MSCs related to cell growth/maintenance, metabolism/energy pathways, protein metabolism, apoptosis, signal transduction and communication as well as transcription and transport, that are not present in BM-MSCs. The approach we initiated, is expected to facilitate systematic functional studies for these multipotent cells. One such approach could be the implementation of the proteomic analysis, during differentiation of AF-MSCs to cells derived from all three germ layers as shown in our study. Data derived from these approaches are expected to clarify the therapeutic potential of the MSCs.


Proceedings ◽  
2018 ◽  
Vol 2 (25) ◽  
pp. 1592
Author(s):  
Sevil Özer ◽  
H. Seda Vatansever ◽  
Feyzan Özdal-Kurt

Bone marrow mesenchymal stem cells (BM-MSCs) are used to repair hypoxic or ischemic tissue. After hypoxic the level of ATP is decreases, cellular functions do not continue and apoptosis or necrosis occur. Apoptosis is a progress of programmed cell death that occurs in normal or pathological conditions. In this study, we were investigated the hypoxic effect on apoptosis in mesenchymal stem cell. Bone marrow-derived stem cells were cultured in hypoxic (1% or 3%) or normoxic conditions 24, 96 well plates for 36 h. Cell viability was shown by MTT assay on 36 h. After fixation of cells with 4% paraformaldehyde, distributions of caspase-3, Bcl-2 and Bax with indirect immunoperoxidase technique, apoptotic cells with TUNEL assay were investigated. All staining results were evaluated using H-score analyses method with ANOVA, statistically. As a result, hypoxic condition was toxic for human mesenchymal stem cells and the number of death cell was higher in that than normoxic condition.


2014 ◽  
Vol 15 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Zeeshan H Ahmad ◽  
Sarah M Alkahtany ◽  
Sukumaran Anil

ABSTRACT Aim To evaluate and compare the cytotoxicity of various concentrations of sodium hypochlorite on immortalized human bone marrow mesenchymal stem cells (MSCs). Materials and methods The 5.25 percent sodium hypochlorite (NaOCl) at concentrations of 0.5, 0.1, 0.025, 0.0125, and 0.005 mg/ml were used to assess the cytotoxic effect on MSCs. Immortalized human bone marrow mesenchymal stem cells (hTERT-MSCs) were exposed to NaOCl at 5 different concentrations. Cell viability was assessed by 3-(4, 5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alamarBlue assays. The cell morphology changes were assessed with scanning electron microscopy (SEM) after exposure to 2, 4, and 24 hour incubation. The ethidium bromide/acridine orange (EB/ AO) fluorescent stain was applied to the cells in the 8-chamber slides after they were incubated with the testing agents for 2 and 4 hours to detect live and dead cells. The observations were quantitatively and qualitatively analyzed. Results The cell viability study using MTT assay and AB assay showed significant reduction with varying concentration at 2 and 4 hours incubation period. The cell viability decreased with the higher percentage of NaOCl. The exposure time also revealed an inverse relation to the cell viability. The SEM analysis showed reduction in the number of cells and morphological alterations with 0.5 mg/ml at 2 and 4 hours compared to 0.025 mg/ml NaOCl. Destruction of the cells with structural alterations and lysis was evident under fluorescence microscope when the cells were exposed to 0.5 mg/ml NaOCl. Conclusion Within the limitations of this in vitro study it can be concluded that NaOCl is toxic to the human bone marrow MSCs. The cell lysis was evident with higher concentration of sodium hypochlorite. From the observations, it can be concluded that a lower concentration of NaOCl may be used as endodontic irrigant due to its cytotoxic properties. Further studies are man datory to evolve a consensus on the optimal concentration of sodium hypochlorite to be used as endodontic irrigant. How to cite this article Alkahtani A, Alkahtany SM, Anil S. An in vitro Evaluation of the Cytotoxicity of Varying Concentrations of Sodium Hypochlorite on Human Mesenchymal Stem Cells. J Contemp Dent Pract 2014;15(4):473-481.


Leukemia ◽  
2006 ◽  
Vol 21 (1) ◽  
pp. 158-163 ◽  
Author(s):  
B Arnulf ◽  
S Lecourt ◽  
J Soulier ◽  
B Ternaux ◽  
M-Noelle Lacassagne ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document