Human Adipose Tissue Possesses a Unique Population of Pluripotent Stem Cells with Nontumorigenic and Low Telomerase Activities: Potential Implications in Regenerative Medicine

2014 ◽  
Vol 23 (7) ◽  
pp. 717-728 ◽  
Author(s):  
Fumitaka Ogura ◽  
Shohei Wakao ◽  
Yasumasa Kuroda ◽  
Kenichiro Tsuchiyama ◽  
Mozhdeh Bagheri ◽  
...  
2008 ◽  
pp. 110306231138043
Author(s):  
Francesco D'andrea ◽  
Francesco De Francesco ◽  
Giuseppe A. Ferraro ◽  
Vincenzo Desiderio ◽  
Virginia Tirino ◽  
...  

Author(s):  
Izabela Harasymiak-Krzyżanowska ◽  
Alicja Niedojadło ◽  
Jolanta Karwat ◽  
Lidia Kotuła ◽  
Paulina Gil-Kulik ◽  
...  

AbstractThe stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.


2008 ◽  
Vol 14 (3) ◽  
pp. 233-242 ◽  
Author(s):  
Francesco D'Andrea ◽  
Francesco De Francesco ◽  
Giuseppe A. Ferraro ◽  
Vincenzo Desiderio ◽  
Virginia Tirino ◽  
...  

2012 ◽  
Vol 4 (2) ◽  
pp. 59
Author(s):  
Yani Lina ◽  
Andi Wijaya

BACKGROUND: The potential use of stem cell-based therapies for repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of disease. Despite the advances, the availability of stem cells remaining a challenge for both scientist and clinicians in pursuing regenerative medicine. CONTENT: Subcutaneous human adipose tissue is an abundant and accessible cell source for applications in tissue engineering and regenerative medicine. Routinely, the adipose issue is digested with collagenase or related lytic enzymes to release a heterogeneous population for stromal vascular fraction (SVF) cells. The SVF cells can be used directly or can be cultured in plastic ware for selection and expansion of an adherent population known as adipose-derived stromal/stem cells (ASCs). Their potential in the ability to differentiate into adipogenic, osteogenic, chondrogenic and other mesenchymal lineages, as well in their other clinically useful properties, includes stimulation of angiogenesis and suppression of inflammation.SUMMARY: Adipose tissue is now recognized as an accessible, abundant and reliable site for the isolation of adult stem cels suitable for the application of tissue engineering and regenerative medicine applications. The past decade has witnessed an explosion of preclinical data relating to the isolation, characterization, cryopreservation, differentiation, and transplantation of freshly isolated stromal vascular fraction cells and adherent, culture-expanded, adipose-derived stromal/stem cells in vitro and in animal models.KEYWORDS: adipose tissue, adult stem cells, regenerative medicine, mesenchymal stem cells


Sign in / Sign up

Export Citation Format

Share Document