scholarly journals Assessment of the Suitability of Chitosan/PolyButylene Succinate Scaffolds Seeded with Mouse Mesenchymal Progenitor Cells for a Cartilage Tissue Engineering Approach

2008 ◽  
Vol 14 (10) ◽  
pp. 1651-1661 ◽  
Author(s):  
João T. Oliveira ◽  
Vitor M. Correlo ◽  
Paula C. Sol ◽  
Ana R. Costa-Pinto ◽  
Patrícia B. Malafaya ◽  
...  
2011 ◽  
Vol 11 (02) ◽  
pp. 433-443 ◽  
Author(s):  
BENJAMIN D. ELDER ◽  
ARVIND MOHAN ◽  
KYRIACOS A. ATHANASIOU

Background. As articular cartilage is unable to repair itself, there is a tremendous clinical need for a tissue engineered replacement tissue. Current tissue engineering efforts using the self-assembly process have demonstrated promising results, but the biomechanical properties remain at roughly 50% of native tissue. Methodology/Principal Findings. The objective of this study was to determine the feasibility of using exogenous crosslinking agents to enhance the biomechanical properties of a scaffoldless cartilage tissue engineering approach. Four crosslinking agents (glutaraldehyde, ribose, genipin, and methylglyoxal) were applied each at a single concentration and single application time. It was determined that ribose application resulted in a significant 69% increase in Young's modulus, a significant 47% increase in ultimate tensile strength, as well as a trend toward a significant increase in aggregate modulus. Additionally, methylglyoxal application resulted in a significant 58% increase in Young's modulus. No treatments altered the biochemical content of the tissue. Conclusions/Significance. To our knowledge, this is the first study to examine the use of exogenous crosslinking agents on any tissue formed using a scaffoldless tissue engineering approach. In particular, this study demonstrates that a one-time treatment with crosslinking agents can be employed effectively to enhance the biomechanical properties of tissue engineered articular cartilage. The results are exciting, as they demonstrate the feasibility of using exogenous crosslinking agents to enhance the biomechanical properties without the need for increased glycosaminoglycan (GAG) and collagen content.


2019 ◽  
Vol 6 (3) ◽  
pp. 031301 ◽  
Author(s):  
Zita M. Jessop ◽  
Susruta Manivannan ◽  
Yadan Zhang ◽  
Catherine A. Thornton ◽  
Roger Narayan ◽  
...  

2020 ◽  
Author(s):  
ke xue ◽  
Yongkang Jiang ◽  
Xiaodie Zhang ◽  
Jun Wu ◽  
Lin Qi ◽  
...  

Abstract Background: Cartilage tissue engineering is a promising option for repairing cartilage defects caused by trauma, inflammation and osteoarthritis, although harvesting a large number of seeding cells with stable phenotypes remains a major challenge. Cartilage stem/progenitor cells (CSPCs) seem to be a promising cell source. Hypoxic extracellular vesicles secreted by mesenchymal stem cells may play a major role in cell-cell and tissue-tissue communication by transporting various RNAs and proteins in mesenchymal stem cell-based therapy. In the current study, we aimed to evaluate the effect of hypoxic adipose-derived stem cells (ADSCs)-derived extracellular vesicles (EVs) on CSPCs proliferation and differentiation. Methods: The characteristics of ADSCs-derived EVs were identified by and flow cytometric analysis. Proliferation, migration, and cartilage-related gene expression of CSPCs were measured with or without the presence of hypoxic ADSCs-derived EVs. The effect of ADSC-derived EVs on CSPCs were evaluated in alginate hydrogel culture, and SEM, histological staining, biochemical and biomechanical analysis were performed to evaluate the effect of hypoxic ADSCs-derived EVs on CSPCs in alginate hydrogel culture. Results: The results indicated that the majority of ADSC-derived EVs exhibited a round-shaped or cup-shaped morphology with a diameter of 40–1000 nm and expressed CD9, CD63, and CD81. CSPCs migration and proliferation were enhanced by hypoxic ADSCs-derived EVs, which also increased the expression of cartilage-related genes. The hypoxic ADSCs-derived EVs induced CSPCs to produce significantly more cartilage matrix and proteoglycan. Conclusions: The present study indicated that hypoxic ADSCs-derived EVs improved the proliferation and chondrogenic differentiation of CSPCs for cartilage tissue engineering.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Ke Xue ◽  
Xiaodie Zhang ◽  
Zixu Gao ◽  
Wanyao Xia ◽  
Lin Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document