scholarly journals Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

2009 ◽  
Vol 15 (2) ◽  
pp. 355-366 ◽  
Author(s):  
Yizhi Meng ◽  
Yi-Xian Qin ◽  
Elaine DiMasi ◽  
Xiaolan Ba ◽  
Miriam Rafailovich ◽  
...  
2011 ◽  
Vol 7 (5) ◽  
pp. 2244-2255 ◽  
Author(s):  
Muwan Chen ◽  
Dang Q.S. Le ◽  
Anette Baatrup ◽  
Jens V. Nygaard ◽  
San Hein ◽  
...  

2018 ◽  
Vol 6 (24) ◽  
pp. 4104-4115 ◽  
Author(s):  
Jenna N. Harvestine ◽  
Hakan Orbay ◽  
Jonathan Y. Chen ◽  
David E. Sahar ◽  
J. Kent Leach

Cell-secreted extracellular matrix potentiates osteogenic differentiation by stromal vascular fraction for bone tissue engineering.


Author(s):  
Ozan Karaman ◽  
Cenk Celik ◽  
Aylin Sendemir Urkmez

Cranial, maxillofacial, and oral fractures, as well as large bone defects, are currently being treated by auto- and allograft procedures. These techniques have limitations such as immune response, donor-site morbidity, and lack of availability. Therefore, the interest in tissue engineering applications as replacement for bone graft has been growing rapidly. Typical bone tissue engineering models require a cell-supporting scaffold in order to maintain a 3-dimensional substrate mimicking in vivo extracellular matrix for cells to attach, proliferate and function during the formation of bone tissue. Combining the understanding of molecular and structural biology with materials engineering and design will enable new strategies for developing biological tissue constructs with clinical relevance. Self-assembled biomimetic scaffolds are especially suitable as they provide spatial and temporal regulation. Specifically, self-assembling peptides capable of in situ gelation serve as attractive candidates for minimally invasive injectable therapies in bone tissue engineering applications.


ACS Omega ◽  
2020 ◽  
Vol 5 (49) ◽  
pp. 31943-31956
Author(s):  
Hanieh Nokhbatolfoghahaei ◽  
Zahrasadat Paknejad ◽  
Mahboubeh Bohlouli ◽  
Maryam Rezai Rad ◽  
Pouyan Aminishakib ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jozafina Haj ◽  
Tharwat Haj Khalil ◽  
Mizied Falah ◽  
Eyal Zussman ◽  
Samer Srouji

While biologically feasible, bone repair is often inadequate, particularly in cases of large defects. The search for effective bone regeneration strategies has led to the emergence of bone tissue engineering (TE) techniques. When integrating electrospinning techniques, scaffolds featuring randomly oriented or aligned fibers, characteristic of the extracellular matrix (ECM), can be fabricated. In parallel, mesenchymal stem cells (MSCs), which are capable of both self-renewing and differentiating into numerous tissue types, have been suggested to be a suitable option for cell-based tissue engineering therapies. This work aimed to create a novel biocompatible hybrid scaffold composed of electrospun polymeric nanofibers combined with osteoconductive ceramics, loaded with human MSCs, to yield a tissue-like construct to promote in vivo bone formation. Characterization of the cell-embedded scaffolds demonstrated their resemblance to bone tissue extracellular matrix, on both micro- and nanoscales and MSC viability and integration within the electrospun nanofibers. Subcutaneous implantation of the cell-embedded scaffolds in the dorsal side of mice led to new bone, muscle, adipose, and connective tissue formation within 8 weeks. This hybrid scaffold may represent a step forward in the pursuit of advanced bone tissue engineering scaffolds.


Sign in / Sign up

Export Citation Format

Share Document