scholarly journals Physical and Biological Characterization of Ferromagnetic Fiber Networks: Effect of Fibrin Deposition on Short-Term In Vitro Responses of Human Osteoblasts

2015 ◽  
Vol 21 (3-4) ◽  
pp. 463-474 ◽  
Author(s):  
Rose L. Spear ◽  
Brajith Srigengan ◽  
Suresh Neelakantan ◽  
Wolfram Bosbach ◽  
Roger A. Brooks ◽  
...  
2012 ◽  
Vol 13 (8) ◽  
pp. 4157-4162 ◽  
Author(s):  
Wei Guo ◽  
Guo-Jun Li ◽  
Hong-Bo Xu ◽  
Jie-Shi Xie ◽  
Tai-Ping Shi ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3759
Author(s):  
Giulia Pascoletti ◽  
Maddalena Di Nardo ◽  
Gionata Fragomeni ◽  
Vincenza Barbato ◽  
Teresa Capriglione ◽  
...  

The ovary is a dynamic mechanoresponsive organ. In vitro, tissue biomechanics was reported to affect follicle activation mainly through the Hippo pathway. Only recently, ovary responsiveness to mechanical signals was exploited for reproductive purposes. Unfortunately, poor characterization of ovarian cortex biomechanics and of the mechanical challenge hampers reproducible and effective treatments, and prevention of tissue damages. In this study the biomechanical response of ovarian cortical tissue from abattoir bovines was characterized for the first time. Ovarian cortical tissue fragments were subjected to uniaxial dynamic testing at frequencies up to 30 Hz, and at increasing average stresses. Tissue structure prior to and after testing was characterized by histology, with established fixation and staining protocols, to assess follicle quality and stage. Tissue properties largely varied with the donor. Bovine ovarian cortical tissue consistently exhibited a nonlinear viscoelastic behavior, with dominant elastic characteristics, in the low range of other reproductive tissues, and significant creep. Strain rate was independent of the applied stress. Histological analysis prior to and after mechanical tests showed that the short-term dynamic mechanical test used for the study did not cause significant tissue tear, nor follicle expulsion or cell damage.


2007 ◽  
Vol 361-363 ◽  
pp. 1059-1062
Author(s):  
Mickael Palard ◽  
J. Combes ◽  
Eric Champion ◽  
Didier Bernache-Assollant

This work aimed at preparing dense and monophasic silicated hydroxyapatite ceramics over the range 0 ≤ x ≤ 1.0 mol of silicon. The synthesis of the powder via an aqueous precipitation process followed by an adapted thermal treatment showed that it was possible to obtain dense single-phased apatite ceramics containing up to 0.6 mol of silicon. The in vitro biological characterization of these materials was performed.


1988 ◽  
Vol 118 (1) ◽  
pp. 14-21 ◽  
Author(s):  
A. Skottner ◽  
A. Forsman ◽  
B. Skoog ◽  
J. L. Kostyo ◽  
C. M. Cameron ◽  
...  

Abstract. Since deamidation of the human GH molecule may alter the manner and extent to which the hormone is cleaved by proteases, and since it has been repeatedly suggested that proteolytic processing is required for the expression of certain of the activities of GH, the present study was conducted to determine whether the biological activity profiles of more acidic forms of human GH are altered. Three charge isomers, GH-b, GH-c and GH-d, representing primarily deamidated forms, were isolated from a native human GH preparation (Crescormon®) in amounts adequate for characterization of their biological activities. All three were essentially equipotent in a radioimmunoassay for human GH. When assessed for growth-promoting activity in the hypophysectomized rat, the isomers were again equipotent with each other and with the GH preparation from which they were derived. The charge isomers also had significant in vitro insulin-like activity on isolated rat adipose tissue and diabetogenic activity in the ob/ob mouse. Thus, the biological activity profiles of these charge isomers of human GH do not differ greatly from one another.


2009 ◽  
Vol 29 (3) ◽  
pp. 930-935 ◽  
Author(s):  
M.S. Laranjeira ◽  
A.G. Dias ◽  
J.D. Santos ◽  
M.H. Fernandes

1998 ◽  
Vol 9 (6) ◽  
pp. 1549-1563 ◽  
Author(s):  
Siew Heng Wong ◽  
Tao Zhang ◽  
Yue Xu ◽  
V. Nathan Subramaniam ◽  
Gareth Griffiths ◽  
...  

Synaptobrevins/vesicle-associated membrane proteins (VAMPs) together with syntaxins and a synaptosome-associated protein of 25 kDa (SNAP-25) are the main components of a protein complex involved in the docking and/or fusion of synaptic vesicles with the presynaptic membrane. We report here the molecular, biochemical, and cell biological characterization of a novel member of the synaptobrevin/VAMP family. The amino acid sequence of endobrevin has 32, 33, and 31% identity to those of synaptobrevin/VAMP-1, synaptobrevin/VAMP-2, and cellubrevin, respectively. Membrane fractionation studies demonstrate that endobrevin is enriched in membrane fractions that are also enriched in the asialoglycoprotein receptor. Indirect immunofluorescence microscopy establishes that endobrevin is primarily associated with the perinuclear vesicular structures of the early endocytic compartment. The preferential association of endobrevin with the early endosome was further established by electron microscopy (EM) immunogold labeling. In vitro binding assays show that endobrevin interacts with immobilized recombinant α-SNAP fused to glutathioneS-transferase (GST). Our results highlight the general importance of members of the synaptobrevin/VAMP protein family in membrane traffic and provide new avenues for future functional and mechanistic studies of this protein as well as the endocytotic pathway.


2016 ◽  
Vol 12 (3) ◽  
pp. 1015-1023 ◽  
Author(s):  
Marta Martins ◽  
Pedro V. Baptista ◽  
Ana Soraia Mendo ◽  
Claudia Correia ◽  
Paula Videira ◽  
...  

Identification of novel molecules that can selectively inhibit the growth of tumor cells, is of utmost importance.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Gloria Sarahí Castañeda-Ramírez ◽  
Pedro Mendoza-de-Gives ◽  
Liliana Aguilar-Marcelino ◽  
María Eugenia López-Arellano ◽  
Jesús Hernández-Romano

We determined the morphological taxonomy of eighteen nematophagous fungi (NF), as well as their in vitro predatory activity against Haemonchus contortus infective larvae (L3). Fungi were classified into six genera and three species, the most common of which were Monacrosporium eudermatum and Arthrobotrys oligospora. We then sequenced five NF isolates using ITS4 and ITS5 primers. These sequences showed high identity with sequences from the NCBI database (98-99%). In contrast, alignments among the same genera and species demonstrated 83–97% identity. Polymorphisms observed between Arthrobotrys and Monacrosporium appear to be associated with differences in biological function, nonspecific mutations, evolutionary processes, feeding behaviour, predatory activity, and microecosystems.


2021 ◽  
Vol 5 (2) ◽  
pp. e202101287
Author(s):  
Emma V Rusilowicz-Jones ◽  
Francesco G Barone ◽  
Fernanda Martins Lopes ◽  
Elezabeth Stephen ◽  
Heather Mortiboys ◽  
...  

The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1-PRKN pathway leading to mitophagy. We provide a detailed cell biological characterization of a benzosulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition after mitochondrial depolarization. This includes enhancement of TOMM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson disease patients carrying loss of function PRKN mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1-independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U2OS cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover.


Sign in / Sign up

Export Citation Format

Share Document