scholarly journals Three-Dimensional Liver Surgery Simulation: Computer-Assisted Surgical Planning with Three-Dimensional Simulation Software and Three-Dimensional Printing

2017 ◽  
Vol 23 (11-12) ◽  
pp. 474-480 ◽  
Author(s):  
Yukio Oshiro ◽  
Nobuhiro Ohkohchi
2022 ◽  
Vol 14 (1) ◽  
pp. 32-39
Author(s):  
Sachit Anand ◽  
Nellai Krishnan ◽  
Prabudh Goel ◽  
Anjan Kumar Dhua ◽  
Vishesh Jain ◽  
...  

Background: In cases with solid tumors, preoperative radiological investigations provide valuable information on the anatomy of the tumor and the adjoining structures, thus helping in operative planning. However, due to a two-dimensional view in these investigations, a detailed spatial relationship is difficult to decipher. In contrast, three-dimensional (3D) printing technology provides a precise topographic view to perform safe surgical resections of these tumors. This systematic review aimed to summarize and analyze current evidence on the utility of 3D printing in pediatric extra-cranial solid tumors. Methods: The present study was registered on PROSPERO—international prospective register of systematic reviews (registration number: CRD42020206022). PubMed, Embase, SCOPUS, and Google Scholar databases were explored with appropriate search criteria to select the relevant studies. Data were extracted to study the bibliographic information of each article, the number of patients in each study, age of the patient(s), type of tumor, organ of involvement, application of 3D printing (surgical planning, training, and/or parental education). The details of 3D printing, such as type of imaging used, software details, printing technique, printing material, and cost were also synthesized. Results: Eight studies were finally included in the systematic review. Three-dimensional printing technology was used in thirty children with Wilms tumor (n = 13), neuroblastoma (n = 7), hepatic tumors (n = 8), retroperitoneal tumor (n = 1), and synovial sarcoma (n = 1). Among the included studies, the technology was utilized for preoperative surgical planning (five studies), improved understanding of the surgical anatomy of solid organs (two studies), and improving the parental understanding of the tumor and its management (one study). Computed tomography and magnetic resonance imaging were either performed alone or in combination for radiological evaluation in these children. Different types of printers and printing materials were used in the included studies. The cost of the 3D printed models and time involved (range 10 h to 4–5 days) were reported by two studies each. Conclusions: 3D printed models can be of great assistance to pediatric surgeons in understanding the spatial relationships of tumors with the adjacent anatomic structures. They also facilitate the understanding of families, improving doctor–patient communication.


2020 ◽  
Vol 9 (12) ◽  
pp. 4008
Author(s):  
Simon Raveau ◽  
Fabienne Jordana

The three-dimensional printing of scaffolds is an interesting alternative to the traditional techniques of periodontal regeneration. This technique uses computer assisted design and manufacturing after CT scan. After 3D modelling, individualized scaffolds are printed by extrusion, selective laser sintering, stereolithography, or powder bed inkjet printing. These scaffolds can be made of one or several materials such as natural polymers, synthetic polymers, or bioceramics. They can be monophasic or multiphasic and tend to recreate the architectural structure of the periodontal tissue. In order to enhance the bioactivity and have a higher regeneration, the scaffolds can be embedded with stem cells and/or growth factors. This new technique could enhance a complete periodontal regeneration. This review summarizes the application of 3D printed scaffolds in periodontal regeneration. The process, the materials and designs, the key advantages and prospects of 3D bioprinting are highlighted, providing new ideas for tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document