An initiation into convergence theory

Author(s):  
Szymon Dolecki
Keyword(s):  
Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1551
Author(s):  
Bothina El-Sobky ◽  
Yousria Abo-Elnaga ◽  
Abd Allah A. Mousa ◽  
Mohamed A. El-Shorbagy

In this paper, a penalty method is used together with a barrier method to transform a constrained nonlinear programming problem into an unconstrained nonlinear programming problem. In the proposed approach, Newton’s method is applied to the barrier Karush–Kuhn–Tucker conditions. To ensure global convergence from any starting point, a trust-region globalization strategy is used. A global convergence theory of the penalty–barrier trust-region (PBTR) algorithm is studied under four standard assumptions. The PBTR has new features; it is simpler, has rapid convergerce, and is easy to implement. Numerical simulation was performed on some benchmark problems. The proposed algorithm was implemented to find the optimal design of a canal section for minimum water loss for a triangle cross-section application. The results are promising when compared with well-known algorithms.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 169
Author(s):  
Avram Sidi

The secant method is a very effective numerical procedure used for solving nonlinear equations of the form f(x)=0. In a recent work (A. Sidi, Generalization of the secant method for nonlinear equations. Appl. Math. E-Notes, 8:115–123, 2008), we presented a generalization of the secant method that uses only one evaluation of f(x) per iteration, and we provided a local convergence theory for it that concerns real roots. For each integer k, this method generates a sequence {xn} of approximations to a real root of f(x), where, for n≥k, xn+1=xn−f(xn)/pn,k′(xn), pn,k(x) being the polynomial of degree k that interpolates f(x) at xn,xn−1,…,xn−k, the order sk of this method satisfying 1<sk<2. Clearly, when k=1, this method reduces to the secant method with s1=(1+5)/2. In addition, s1<s2<s3<⋯, such that limk→∞sk=2. In this note, we study the application of this method to simple complex roots of a function f(z). We show that the local convergence theory developed for real roots can be extended almost as is to complex roots, provided suitable assumptions and justifications are made. We illustrate the theory with two numerical examples.


2004 ◽  
Vol 165 (1-2) ◽  
pp. 45-58 ◽  
Author(s):  
Shui-Li Chen ◽  
Sheng-Tao Chen ◽  
Xiang-Gong Wang
Keyword(s):  

1982 ◽  
Vol 19 (A) ◽  
pp. 359-365 ◽  
Author(s):  
David Pollard

The theory of weak convergence has developed into an extensive and useful, but technical, subject. One of its most important applications is in the study of empirical distribution functions: the explication of the asymptotic behavior of the Kolmogorov goodness-of-fit statistic is one of its greatest successes. In this article a simple method for understanding this aspect of the subject is sketched. The starting point is Doob's heuristic approach to the Kolmogorov-Smirnov theorems, and the rigorous justification of that approach offered by Donsker. The ideas can be carried over to other applications of weak convergence theory.


2011 ◽  
Vol 403-408 ◽  
pp. 2127-2130
Author(s):  
Chun Yan Liu ◽  
Zhu Lin Liu

With the computer software and technology continuously improving, because of various factors influencing, computer engineers are very tough on how to improve the quality of software products, this is a bottleneck problem we must solve. We think that the information engineering combining with the philosophy thought would make engineer’s ideas suddenly enlightened. We find a method and model to solve software engineering problems from the philosophical Angle, and put forward the importance of information philosophy in the study of information engineering by standing at this altitude of the information engineering. As a new field, information philosophy provides a unified, convergence theory frame, it can satisfy the requirement of further specialized. Information philosophy will become most exciting and productive philosophy research field in our era's.


Sign in / Sign up

Export Citation Format

Share Document