Halpern’s iteration for nonexpansive mappings

Author(s):  
Genaro López ◽  
Victoria Martín-Márquez ◽  
Hong-Kun Xu
Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1423-1434 ◽  
Author(s):  
Sheng Wang ◽  
Min Chen

In this paper, we propose an iterative algorithm for finding the common element of solution set of a split equilibrium problem and common fixed point set of a finite family of asymptotically nonexpansive mappings in Hilbert space. The strong convergence of this algorithm is proved.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yuanheng Wang ◽  
Xiuping Wu ◽  
Chanjuan Pan

AbstractIn this paper, we propose an iteration algorithm for finding a split common fixed point of an asymptotically nonexpansive mapping in the frameworks of two real Banach spaces. Under some suitable conditions imposed on the sequences of parameters, some strong convergence theorems are proved, which also solve some variational inequalities that are closely related to optimization problems. The results here generalize and improve the main results of other authors.


2020 ◽  
Vol 53 (1) ◽  
pp. 309-324
Author(s):  
Ibrahim Karahan ◽  
Lateef Olakunle Jolaoso

AbstractIn this article, a new problem that is called system of split mixed equilibrium problems is introduced. This problem is more general than many other equilibrium problems such as problems of system of equilibrium, system of split equilibrium, split mixed equilibrium, and system of split variational inequality. A new iterative algorithm is proposed, and it is shown that it satisfies the weak convergence conditions for nonexpansive mappings in real Hilbert spaces. Also, an application to system of split variational inequality problems and a numeric example are given to show the efficiency of the results. Finally, we compare its rate of convergence other algorithms and show that the proposed method converges faster.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Songnian He ◽  
Wenlong Zhu

LetHbe a real Hilbert space andC⊂H a closed convex subset. LetT:C→Cbe a nonexpansive mapping with the nonempty set of fixed pointsFix(T). Kim and Xu (2005) introduced a modified Mann iterationx0=x∈C,yn=αnxn+(1−αn)Txn,xn+1=βnu+(1−βn)yn, whereu∈Cis an arbitrary (but fixed) element, and{αn}and{βn}are two sequences in(0,1). In the case where0∈C, the minimum-norm fixed point ofTcan be obtained by takingu=0. But in the case where0∉C, this iteration process becomes invalid becausexnmay not belong toC. In order to overcome this weakness, we introduce a new modified Mann iteration by boundary point method (see Section 3 for details) for finding the minimum norm fixed point of Tand prove its strong convergence under some assumptions. Since our algorithm does not involve the computation of the metric projectionPC, which is often used so that the strong convergence is guaranteed, it is easy implementable. Our results improve and extend the results of Kim, Xu, and some others.


Sign in / Sign up

Export Citation Format

Share Document