scholarly journals Path connectedness and entropy density of the space of hyperbolic ergodic measures

Author(s):  
Anton Gorodetski ◽  
Yakov Pesin
Fractals ◽  
2007 ◽  
Vol 15 (01) ◽  
pp. 63-72 ◽  
Author(s):  
JÖRG NEUNHÄUSERER

We develop the dimension theory for a class of linear solenoids, which have a "fractal" attractor. We will find the dimension of the attractor, proof formulas for the dimension of ergodic measures on this attractor and discuss the question of whether there exists a measure of full dimension.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Sergey Kryzhevich ◽  
Viktor Avrutin ◽  
Nikita Begun ◽  
Dmitrii Rachinskii ◽  
Khosro Tajbakhsh

We studied topological and metric properties of the so-called interval translation maps (ITMs). For these maps, we introduced the maximal invariant measure and demonstrated that an ITM, endowed with such a measure, is metrically conjugated to an interval exchange map (IEM). This allowed us to extend some properties of IEMs (e.g., an estimate of the number of ergodic measures and the minimality of the symbolic model) to ITMs. Further, we proved a version of the closing lemma and studied how the invariant measures depend on the parameters of the system. These results were illustrated by a simple example or a risk management model where interval translation maps appear naturally.


Particles ◽  
2020 ◽  
Vol 3 (1) ◽  
pp. 178-192 ◽  
Author(s):  
O. Soloveva ◽  
P. Moreau ◽  
L. Oliva ◽  
V. Voronyuk ◽  
V. Kireyeu ◽  
...  

We study the influence of the baryon chemical potential μ B on the properties of the Quark–Gluon–Plasma (QGP) in and out-of equilibrium. The description of the QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature T c from lattice Quantum Chromodynamics (QCD). We study the transport coefficients such as the ratio of shear viscosity η and bulk viscosity ζ over entropy density s, i.e., η / s and ζ / s in the ( T , μ ) plane and compare to other model results available at μ B = 0 . The out-of equilibrium study of the QGP is performed within the Parton–Hadron–String Dynamics (PHSD) transport approach extended in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections based on the DQPM and the evaluated at actual temperature T and baryon chemical potential μ B in each individual space-time cell where partonic scattering takes place. The traces of their μ B dependences are investigated in different observables for symmetric Au + Au and asymmetric Cu + Au collisions such as rapidity and m T -distributions and directed and elliptic flow coefficients v 1 , v 2 in the energy range 7.7 GeV ≤ s N N ≤ 200 GeV.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Xun Chen ◽  
Lin Zhang ◽  
Danning Li ◽  
Defu Hou ◽  
Mei Huang

Abstract We investigate rotating effect on deconfinement phase transition in an Einstein-Maxwell-Dilaton (EMD) model in bottom-up holographic QCD approach. By constructing a rotating black hole, which is supposed to be dual to rotating strongly coupled nuclear matter, we investigate the thermodynamic quantities, including entropy density, pressure, energy density, trace anomaly, sound speed and specific heat for both pure gluon system and two-flavor system under rotation. It is shown that those thermodynamic quantities would be enhanced by large angular velocity. Also, we extract the information of phase transition from those thermodynamic quantities, as well as the order parameter of deconfinement phase transition, i.e. the loop operators. It is shown that, in the T − ω plane, for two-flavor case with small chemical potential, the phase transition is always crossover. The transition temperature decreases slowly with angular velocity and chemical potential. For pure gluon system with zero chemical potential, the phase transition is always first order, while at finite chemical potential a critical end point (CEP) will present in the T − ω plane.


2018 ◽  
Vol 171 ◽  
pp. 02005
Author(s):  
Helmut Satz

The relative multiplicities for hadron production in different high energy collisions are in general well described by an ideal gas of all hadronic resonances, except that under certain conditions, strange particle rates are systematically reduced. We show that the suppression factor γs, accounting for reduced strange particle rates in pp, pA and AA collisions at different collision energies, becomes a universal function when expressed in terms of the initial entropy density s0 or the initial temperature T of the produced thermal medium. It is found that γs increases from about 0.5 to 1.0 in a narrow temperature range around the quark-hadron transition temperature Tc ≃ 160 MeV. Strangeness suppression thus disappears with the onset of color deconfinement; subsequently, full equilibrium resonance gas behavior is attained.


2004 ◽  
Vol 15 (4) ◽  
pp. 453-468
Author(s):  
S. Bezuglyi ◽  
K. Medynets
Keyword(s):  

1995 ◽  
Vol 58 (6) ◽  
pp. 1357-1359 ◽  
Author(s):  
S. G. Khaliullin

Entropy ◽  
2018 ◽  
Vol 20 (10) ◽  
pp. 802 ◽  
Author(s):  
Sergey Serdyukov

In this work, we consider extended irreversible thermodynamics in assuming that the entropy density is a function of both common thermodynamic variables and their higher-order time derivatives. An expression for entropy production, and the linear phenomenological equations describing diffusion and chemical reactions, are found in the context of this approach. Solutions of the sets of linear equations with respect to fluxes and their higher-order time derivatives allow the coefficients of diffusion and reaction rate constants to be established as functions of size of the nanosystems in which these reactions occur. The Maxwell-Cattaneo and Jeffreys constitutive equations, as well as the higher-order constitutive equations, which describe the processes in reaction-diffusion systems, are obtained.


Sign in / Sign up

Export Citation Format

Share Document