scholarly journals Short survey on the existence of slices for the space of Riemannian metrics

Author(s):  
Diego Corro ◽  
Jan-Bernhard Kordaß

We review the well-known slice theorem of Ebin for the action of the diffeomorphism group on the space of Riemannian metrics of a closed manifold. We present advances in the study of the spaces of Riemannian metrics, and produce a more concise proof for the existence of slices.

Author(s):  
Matthew J. Gursky ◽  
Jeff A. Viaclovsky

AbstractWe investigate rigidity and stability properties of critical points of quadratic curvature functionals on the space of Riemannian metrics. We show it is possible to “gauge” the Euler–Lagrange equations, in a self-adjoint fashion, to become elliptic. Fredholm theory may then be used to describe local properties of the moduli space of critical metrics. We show a number of compact examples are infinitesimally rigid, and consequently, are isolated critical points in the space of unit-volume Riemannian metrics. We then give examples of critical metrics which are strict local minimizers (up to diffeomorphism and scaling). A corollary is a local “reverse Bishop's inequality” for such metrics. In particular, any metric


2013 ◽  
Vol 35 (1) ◽  
pp. 192-214 ◽  
Author(s):  
KATHRYN MANN

AbstractFor $r\geq 3$, $p\geq 2$, we classify all actions of the groups ${ \mathrm{Diff} }_{c}^{r} ( \mathbb{R} )$ and ${ \mathrm{Diff} }_{+ }^{r} ({S}^{1} )$ by ${C}^{p} $-diffeomorphisms on the line and on the circle. This is the same as describing all non-trivial group homomorphisms between groups of compactly supported diffeomorphisms on 1-manifolds. We show that all such actions have an elementary form, which we call topologically diagonal. As an application, we answer a question of Ghys in the 1-manifold case: if $M$ is any closed manifold, and ${\mathrm{Diff} }^{\infty } \hspace{-2.0pt} \mathop{(M)}\nolimits_{0} $ injects into the diffeomorphism group of a 1-manifold, must $M$ be one-dimensional? We show that the answer is yes, even under more general conditions. Several lemmas on subgroups of diffeomorphism groups are of independent interest, including results on commuting subgroups and flows.


2004 ◽  
Vol 10 (4) ◽  
pp. 457-486 ◽  
Author(s):  
Robert I. Soare

Abstract. LetMbe a smooth, compact manifold of dimensionn≥ 5 and sectional curvature ∣K∣ ≤ 1. Let Met(M) = Riem(M)/Diff(M) be the space of Riemannian metrics onMmodulo isometries. Nabutovsky and Weinberger studied the connected components of sublevel sets (and local minima) for certain functions on Met(M) such as the diameter. They showed that for every Turing machineTe,eϵ ω, there is a sequence (uniformly effective ine) of homologyn-sphereswhich are also hypersurfaces, such thatis diffeomorphic to the standardn-sphereSn(denoted)iffTehalts on inputk, and in this case the connected sum, so, andis associated with a local minimum of the diameter function on Met(M) whose depth is roughly equal to the settling time ae σe(k)ofTeon inputsy<k.At their request Soare constructed a particular infinite sequence {Ai}ϵωof c.e. sets so that for allithe settling time of the associated Turing machine forAidominates that forAi+1, even when the latter is composed with an arbitrary computable function. From this, Nabutovsky and Weinberger showed that the basins exhibit a “fractal” like behavior with extremely big basins, and very much smaller basins coming off them, and so on. This reveals what Nabutovsky and Weinberger describe in their paper on fractals as “the astonishing richness of the space of Riemannian metrics on a smooth manifold, up to reparametrization.” From the point of view of logic and computability, the Nabutovsky-Weinberger results are especially interesting because: (1) they use c.e. sets to prove structuralcomplexityof the geometry and topology, not merelyundecidabilityresults as in the word problem for groups, Hilbert's Tenth Problem, or most other applications; (2) they usenontrivialinformation about c.e. sets, the Soare sequence {Ai}iϵωabove, not merely Gödel's c.e. noncomputable set K of the 1930's; and (3)withoutusing computability theory there is no known proof that local minima exist even for simple manifolds like the torusT5(see §9.5).


2015 ◽  
Vol 26 (04) ◽  
pp. 1540002 ◽  
Author(s):  
Yoshiaki Maeda ◽  
Steven Rosenberg ◽  
Fabián Torres-Ardila

A Riemannian metric on a manifold M induces a family of Riemannian metrics on the loop space LM depending on a Sobolev space parameter s. We compute the connection forms of these metrics and the higher symbols of their curvature forms, which take values in pseudodifferential operators (ΨDOs). These calculations are used in the followup paper [10] to construct Chern–Simons classes on TLM which detect nontrivial elements in the diffeomorphism group of certain Sasakian 5-manifolds associated to Kähler surfaces.


2020 ◽  
Vol 63 (4) ◽  
pp. 901-908
Author(s):  
Philipp Reiser

AbstractLet $M$ be a topological spherical space form, i.e., a smooth manifold whose universal cover is a homotopy sphere. We determine the number of path components of the space and moduli space of Riemannian metrics with positive scalar curvature on $M$ if the dimension of $M$ is at least 5 and $M$ is not simply-connected.


Sign in / Sign up

Export Citation Format

Share Document