Brenier’s polar factorization theorem

Author(s):  
Cédric Villani
Author(s):  
Alfred Galichon

This chapter considers the case when the attributes are d-dimensional vectors and the surplus is the scalar product; it assumes that the distribution of the workers' attributes is continuous, but it relaxes the assumption that the distribution of the firms' attributes is discrete. This setting allows us to entirely rediscover convex analysis, which is introduced from the point of view of optimal transport. As a consequence, Brenier's polar factorization theorem is given, which provides a vector extension for the scalar notions of quantile and rearrangement.


2013 ◽  
Vol 401 (1) ◽  
pp. 289-292 ◽  
Author(s):  
Kohei Nakade ◽  
Tomoyoshi Ohwada ◽  
Kichi-Suke Saito

2006 ◽  
Vol 05 (02) ◽  
pp. 231-243
Author(s):  
DONGVU TONIEN

Recently, Hoit introduced arithmetic on blocks, which extends the binary string operation by Jacobs and Keane. A string of elements from the Abelian additive group of residues modulo m, (Zm, ⊕), is called an m-block. The set of m-blocks together with Hoit's new product operation form an interesting algebraic structure where associative law and cancellation law hold. A weaker form of unique factorization and criteria for two indecomposable blocks to commute are also proved. In this paper, we extend Hoit's results by replacing the Abelian group (Zm, ⊕) by an arbitrary monoid (A, ◦). The set of strings built up from the alphabet A is denoted by String(A). We extend the operation ◦ on the alphabet set A to the string set String(A). We show that (String(A), ◦) is a monoid if and only if (A, ◦) is a monoid. When (A, ◦) is a group, we prove that stronger versions of a cancellation law and unique factorization hold for (String(A), ◦). A general criterion for two irreducible strings to commute is also presented.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ze Long Liu ◽  
Bianka Mecaj ◽  
Matthias Neubert ◽  
Xing Wang

Abstract Building on the recent derivation of a bare factorization theorem for the b-quark induced contribution to the h → γγ decay amplitude based on soft-collinear effective theory, we derive the first renormalized factorization theorem for a process described at subleading power in scale ratios, where λ = mb/Mh « 1 in our case. We prove two refactorization conditions for a matching coefficient and an operator matrix element in the endpoint region, where they exhibit singularities giving rise to divergent convolution integrals. The refactorization conditions ensure that the dependence of the decay amplitude on the rapidity regulator, which regularizes the endpoint singularities, cancels out to all orders of perturbation theory. We establish the renormalized form of the factorization formula, proving that extra contributions arising from the fact that “endpoint regularization” does not commute with renormalization can be absorbed, to all orders, by a redefinition of one of the matching coefficients. We derive the renormalization-group evolution equation satisfied by all quantities in the factorization formula and use them to predict the large logarithms of order $$ {\alpha \alpha}_s^2{L}^k $$ αα s 2 L k in the three-loop decay amplitude, where $$ L=\ln \left(-{M}_h^2/{m}_b^2\right) $$ L = ln − M h 2 / m b 2 and k = 6, 5, 4, 3. We find perfect agreement with existing numerical results for the amplitude and analytical results for the three-loop contributions involving a massless quark loop. On the other hand, we disagree with the results of previous attempts to predict the series of subleading logarithms $$ \sim {\alpha \alpha}_s^n{L}^{2n+1} $$ ∼ αα s n L 2 n + 1 .


Sign in / Sign up

Export Citation Format

Share Document