Singularities and the obstacle problem

Author(s):  
David G. Schaeffer
Keyword(s):  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matteo Focardi ◽  
Emanuele Spadaro

AbstractBuilding upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results:(i)local finiteness of the {(n-1)}-dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure),(ii){{\mathcal{H}}^{n-1}}-rectifiability of the free boundary,(iii)classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most {(n-2)} in the free boundary.Instead, if {\varphi\in C^{k+1}(\mathbb{R}^{n})}, {k\geq 2}, similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than {k+1}.


2019 ◽  
Vol 7 (1) ◽  
pp. 179-196
Author(s):  
Anders Björn ◽  
Daniel Hansevi

Abstract The theory of boundary regularity for p-harmonic functions is extended to unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1 < p < ∞. The barrier classification of regular boundary points is established, and it is shown that regularity is a local property of the boundary. We also obtain boundary regularity results for solutions of the obstacle problem on open sets, and characterize regularity further in several other ways.


1975 ◽  
Vol 17 (1) ◽  
pp. 34-47 ◽  
Author(s):  
David G Schaeffer

2014 ◽  
Vol 66 (5) ◽  
pp. 1110-1142
Author(s):  
Dong Li ◽  
Guixiang Xu ◽  
Xiaoyi Zhang

AbstractWe consider the obstacle problem for the Schrödinger evolution in the exterior of the unit ball with Dirichlet boundary condition. Under radial symmetry we compute explicitly the fundamental solution for the linear Dirichlet Schrödinger propagator and give a robust algorithm to prove sharp L1 → L∞ dispersive estimates. We showcase the analysis in dimensions n = 5, 7. As an application, we obtain global well–posedness and scattering for defocusing energy-critical NLS on with Dirichlet boundary condition and radial data in these dimensions.


2018 ◽  
Vol 24 (5) ◽  
pp. 1503-1529 ◽  
Author(s):  
Philippe G. Ciarlet ◽  
Cristinel Mardare ◽  
Paolo Piersanti

Our objective is to identify two-dimensional equations that model an obstacle problem for a linearly elastic elliptic membrane shell subjected to a confinement condition expressing that all the points of the admissible deformed configurations remain in a given half-space. To this end, we embed the shell into a family of linearly elastic elliptic membrane shells, all sharing the same middle surface [Formula: see text], where [Formula: see text] is a domain in [Formula: see text] and [Formula: see text] is a smooth enough immersion, all subjected to this confinement condition, and whose thickness [Formula: see text] is considered as a “small” parameter approaching zero. We then identify, and justify by means of a rigorous asymptotic analysis as [Formula: see text] approaches zero, the corresponding “limit” two-dimensional variational problem. This problem takes the form of a set of variational inequalities posed over a convex subset of the space [Formula: see text]. The confinement condition considered here considerably departs from the Signorini condition usually considered in the existing literature, where only the “lower face” of the shell is required to remain above the “horizontal” plane. Such a confinement condition renders the asymptotic analysis substantially more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.


Sign in / Sign up

Export Citation Format

Share Document