confinement condition
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 36 (37) ◽  
Author(s):  
B. C. Chanyal

The octonion algebra is analyzed using a formalism that demonstrates its use in color quark confinement. In this study, we attempt to write a connection between octonion algebra and SU(3)[Formula: see text] group generators, as well as color quarks representation. We demonstrated the glueballs construction in the extended octonionic color field and also proposed the prerequisite for octonion color confinement of hadrons.


2019 ◽  
Vol 24 (10) ◽  
pp. 3061-3079 ◽  
Author(s):  
Philippe G Ciarlet ◽  
Paolo Piersanti

In this paper, we define, a priori, a natural two-dimensional Koiter’s model of a ‘general’ linearly elastic shell subject to a confinement condition. As expected, this model takes the form of variational inequalities posed over a non-empty closed convex subset of the function space used for the ‘unconstrained’ Koiter’s model. We then perform a rigorous asymptotic analysis as the thickness of the shell, considered a ‘small’ parameter, approaches zero, when the shell belongs to one of the three main classes of linearly elastic shells, namely elliptic membrane shells, generalized membrane shells and flexural shells. To illustrate the soundness of this model, we consider elliptic membrane shells to fix ideas. We then show that, in this case, the ‘limit’ model obtained in this fashion coincides with the two-dimensional ‘limit’ model obtained by means of another rigorous asymptotic analysis, but this time with the three-dimensional model of a ‘general’ linearly elastic shell subject to a confinement condition as a point of departure. In this fashion, our proposed Koiter’s model of a linearly elastic shell subject to a confinement condition is fully justified in this case, even though it is not itself a ‘limit’ model.


2018 ◽  
Vol 24 (5) ◽  
pp. 1503-1529 ◽  
Author(s):  
Philippe G. Ciarlet ◽  
Cristinel Mardare ◽  
Paolo Piersanti

Our objective is to identify two-dimensional equations that model an obstacle problem for a linearly elastic elliptic membrane shell subjected to a confinement condition expressing that all the points of the admissible deformed configurations remain in a given half-space. To this end, we embed the shell into a family of linearly elastic elliptic membrane shells, all sharing the same middle surface [Formula: see text], where [Formula: see text] is a domain in [Formula: see text] and [Formula: see text] is a smooth enough immersion, all subjected to this confinement condition, and whose thickness [Formula: see text] is considered as a “small” parameter approaching zero. We then identify, and justify by means of a rigorous asymptotic analysis as [Formula: see text] approaches zero, the corresponding “limit” two-dimensional variational problem. This problem takes the form of a set of variational inequalities posed over a convex subset of the space [Formula: see text]. The confinement condition considered here considerably departs from the Signorini condition usually considered in the existing literature, where only the “lower face” of the shell is required to remain above the “horizontal” plane. Such a confinement condition renders the asymptotic analysis substantially more difficult, however, as the constraint now bears on a vector field, the displacement vector field of the reference configuration, instead of on only a single component of this field.


2018 ◽  
Vol 6 (1) ◽  
pp. 284-291
Author(s):  
Deliya Duckworth ◽  
◽  
Jade Housewirth ◽  
Britney Payne ◽  
Conrrado Jimenez ◽  
...  

2016 ◽  
Vol 774 ◽  
pp. 012179 ◽  
Author(s):  
R A Syrovatka ◽  
L V Deputatova ◽  
V S Filinov ◽  
D S Lapitsky ◽  
V Ya Pecherkin ◽  
...  

2014 ◽  
Vol 29 (29) ◽  
pp. 1450165 ◽  
Author(s):  
Roee Steiner ◽  
Eduardo Guendelman

The present work represents among other things a generalization to the non-Abelian case of our previous result where the Abelian case was studied. In the U(1) case the coupling to the gauge field contains a term of the form g(ϕ)jμ(Aμ +∂μB), where B is an auxiliary field and jμ is the Dirac current. The scalar field ϕ determines the local value of the coupling of the gauge field to the Dirac particle. The consistency of the equations determines the condition ∂μϕjμ = 0 which implies that the Dirac current cannot have a component in the direction of the gradient of the scalar field. As a consequence, if ϕ has a soliton behavior, we obtain that jμ cannot have a flux through the wall of the bubble, defining a confinement mechanism where the fermions are kept inside those bags. In this paper, we present more models in Abelian case which produce constraint on the Dirac or scalar current and also spin. Furthermore a model that gives the MIT confinement condition for gauge fields is obtained. We generalize this procedure for the non-Abelian case and we find a constraint that can be used to build a bag model. In the non-Abelian case, the confining boundary conditions hold at a specific surface of a domain wall.


2014 ◽  
Author(s):  
M. Schultz ◽  
P. Baumhoff ◽  
N. Kallweit ◽  
M. Sato ◽  
A. Krüger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document