scholarly journals On laminar flow through a channel or tube with injection: application of method of averages

1957 ◽  
Vol 14 (4) ◽  
pp. 361-368 ◽  
Author(s):  
Morris Morduchow
Keyword(s):  

In this work, bifurcation characteristics of unsteady, viscous, Newtonian laminar flow in two-dimensional sudden expansion and sudden contraction-expansion channels have been studied for different values of expansion ratio. The governing equations have been solved using finite volume method and FLUENT software has been employed to visualize the simulation results. Three different mesh studies have been performed to calculate critical Reynolds number (Recr) for different types of bifurcation phenomena. It is found that Recr decreases with the increase in expansion ratio (ER).


2017 ◽  
Vol 885 ◽  
pp. 012021 ◽  
Author(s):  
Kitae Yu ◽  
Cheol Park ◽  
Sedon Kim ◽  
Heegun Song ◽  
Hyomin Jeong

1981 ◽  
Vol 103 (4) ◽  
pp. 785-790 ◽  
Author(s):  
J. H. Masliyah ◽  
K. Nandakumar

The Navier-Stokes equation in a rotating frame of reference is solved numerically to obtain the flow field for a steady, fully developed laminar flow of a Newtonian fluid in a twisted tube having a square cross-section. The macroscopic force and energy balance equations and the viscous dissipation term are presented in terms of variables in a rotating reference frame. The computed values of friction factor are presented for dimensionless twist ratios, (i.e., length of tube over a rotation of π radians normalized with respect to half the width of tube) of 20, 10, 5 and 2.5 and for Reynolds numbers up to 2000. The qualitative nature of the axial velocity profile was observed to be unaffected by the swirling motion. The secondary motion was found to be most important near the wall.


A class of two-dimensional channels, with walls whose radius of curvature is uniformly large relative to local channel width, is described, and the velocity field of laminar flow through these channels is obtained as a power series in the small curvature parameter. The leading term is the Jeffery-Hamel solution considered in part I, and it is shown here how the higher-order terms are found. Terms of the third approximation have been computed. The theory is applied to two examples, for one of which experimental results are available and confirm the theoretical values with fair accuracy.


Sign in / Sign up

Export Citation Format

Share Document