scholarly journals On the optimal stability of the Bernstein basis

1996 ◽  
Vol 65 (216) ◽  
pp. 1553-1567 ◽  
Author(s):  
R. T. Farouki ◽  
T. N. T. Goodman
Author(s):  
Abdul Khaleq O. Al-Jubory ◽  
Shaymaa Hussain Salih

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   


Author(s):  
Natalia A. Danilkina ◽  
Anastasia I. Govdi ◽  
Alexander F. Khlebnikov ◽  
Alexander O. Tikhomirov ◽  
Vladimir V. Sharoyko ◽  
...  
Keyword(s):  

Filomat ◽  
2016 ◽  
Vol 30 (4) ◽  
pp. 937-943 ◽  
Author(s):  
Buket Simsek ◽  
Ahmet Yardimci

In this paper we survey the 3D reconstruction of an object from its 2D cross-sections has many applications in different fields of sciences such as medical physics and biomedical applications. The aim of this paper is to give not only the Bezier curves in medical applications, but also by using generating functions for the Bernstein basis functions and their identities, some combinatorial sums involving binomial coefficients are deriven. Finally, we give some comments related to the above areas.


Author(s):  
Guicang Zhang ◽  
Kai Wang

Firstly, a new set of Quasi-Cubic Trigonometric Bernstein basis with two tension shape parameters is constructed, and we prove that it is an optimal normalized totally basis in the framework of Quasi Extended Chebyshev space. And the Quasi-Cubic Trigonometric Bézier curve is generated by the basis function and the cutting algorithm of the curve are given, the shape features (cusp, inflection point, loop and convexity) of the Quasi-Cubic Trigonometric Bézier curve are analyzed by using envelope theory and topological mapping; Next we construct the non-uniform Quasi-Cubic Trigonometric B-spline basis by assuming the linear combination of the optimal normalized totally positive basis have partition of unity and continuity, and its expression is obtained. And the non-uniform B-spline basis is proved to have totally positive and high-order continuity. Finally, the non-uniform Quasi Cubic Trigonometric B-spline curve and surface are defined, the shape features of the non-uniform Quasi-Cubic Trigonometric B-spline curve are discussed, and the curve and surface are proved to be continuous.


2014 ◽  
Vol 25 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Massimiliano Guzzo ◽  
Luigi Chierchia ◽  
Giancarlo Benettin
Keyword(s):  

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1342 ◽  
Author(s):  
Hazizah Mohd Ijam ◽  
Zarina Bibi Ibrahim

This paper aims to select the best value of the parameter ρ from a general set of linear multistep formulae which have the potential for efficient implementation. The ρ -Diagonally Implicit Block Backward Differentiation Formula ( ρ -DIBBDF) was proposed to approximate the solution for stiff Ordinary Differential Equations (ODEs) to achieve the research objective. The selection of ρ for optimal stability properties in terms of zero stability, absolute stability, error constant and convergence are discussed. In the diagonally implicit formula that uses a lower triangular matrix with identical diagonal entries, allowing a maximum of one lower-upper (LU) decomposition per integration stage to be performed will result in substantial computing benefits to the user. The numerical results and plots of accuracy indicate that the ρ -DIBBDF method performs better than the existing fully and diagonally Block Backward Differentiation Formula (BBDF) methods.


Sign in / Sign up

Export Citation Format

Share Document