scholarly journals Quasi Cubic Trigonometric Curve and Surface

Author(s):  
Guicang Zhang ◽  
Kai Wang

Firstly, a new set of Quasi-Cubic Trigonometric Bernstein basis with two tension shape parameters is constructed, and we prove that it is an optimal normalized totally basis in the framework of Quasi Extended Chebyshev space. And the Quasi-Cubic Trigonometric Bézier curve is generated by the basis function and the cutting algorithm of the curve are given, the shape features (cusp, inflection point, loop and convexity) of the Quasi-Cubic Trigonometric Bézier curve are analyzed by using envelope theory and topological mapping; Next we construct the non-uniform Quasi-Cubic Trigonometric B-spline basis by assuming the linear combination of the optimal normalized totally positive basis have partition of unity and continuity, and its expression is obtained. And the non-uniform B-spline basis is proved to have totally positive and high-order continuity. Finally, the non-uniform Quasi Cubic Trigonometric B-spline curve and surface are defined, the shape features of the non-uniform Quasi-Cubic Trigonometric B-spline curve are discussed, and the curve and surface are proved to be continuous.

Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1154
Author(s):  
Yunyi Fu ◽  
Yuanpeng Zhu

In this paper, under the framework of Extended Chebyshev space, four new generalized quasi cubic trigonometric Bernstein basis functions with two shape functions α(t) and β(t) are constructed in a generalized quasi cubic trigonometric space span{1,sin2t,(1−sint)2α(t),(1−cost)2β(t)}, which includes lots of previous work as special cases. Sufficient conditions concerning the two shape functions to guarantee the new construction of Bernstein basis functions are given, and three specific examples of the shape functions and the related applications are shown. The corresponding generalized quasi cubic trigonometric Bézier curves and the corner cutting algorithm are also given. Based on the new constructed generalized quasi cubic trigonometric Bernstein basis functions, a kind of new generalized quasi cubic trigonometric B-spline basis functions with two local shape functions αi(t) and βi(t) is also constructed in detail. Some important properties of the new generalized quasi cubic trigonometric B-spline basis functions are proven, including partition of unity, nonnegativity, linear independence, total positivity and C2 continuity. The shape of the parametric curves generated by the new proposed B-spline basis functions can be adjusted flexibly.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Xuli Han ◽  
Yuanpeng Zhu

Within the general framework of Quasi Extended Chebyshev space, we prove that the cubic trigonometric Bézier basis with two shape parametersλandμgiven in Han et al. (2009) forms an optimal normalized totally positive basis forλ,μ∈(-2,1]. Moreover, we show that forλ=-2orμ=-2the basis is not suited for curve design from the blossom point of view. In order to compute the corresponding cubic trigonometric Bézier curves stably and efficiently, we also develop a new corner cutting algorithm.


2018 ◽  
Vol 2018 ◽  
pp. 1-25 ◽  
Author(s):  
Kai Wang ◽  
Guicang Zhang

Four new trigonometric Bernstein-like bases with two denominator shape parameters (DTB-like basis) are constructed, based on which a kind of trigonometric Bézier-like curve with two denominator shape parameters (DTB-like curves) that are analogous to the cubic Bézier curves is proposed. The corner cutting algorithm for computing the DTB-like curves is given. Any arc of an ellipse or a parabola can be exactly represented by using the DTB-like curves. A new class of trigonometric B-spline-like basis function with two local denominator shape parameters (DT B-spline-like basis) is constructed according to the proposed DTB-like basis. The totally positive property of the DT B-spline-like basis is supported. For different shape parameter values, the associated trigonometric B-spline-like curves with two denominator shape parameters (DT B-spline-like curves) can be C2 continuous for a non-uniform knot vector. For a special value, the generated curves can be C(2n-1)  (n=1,2,3,…) continuous for a uniform knot vector. A kind of trigonometric B-spline-like surfaces with four denominator shape parameters (DT B-spline-like surface) is shown by using the tensor product method, and the associated DT B-spline-like surfaces can be C2 continuous for a nonuniform knot vector. When given a special value, the related surfaces can be C(2n-1)  (n=1,2,3,…) continuous for a uniform knot vector. A new class of trigonometric Bernstein–Bézier-like basis function with three denominator shape parameters (DT BB-like basis) over a triangular domain is also constructed. A de Casteljau-type algorithm is developed for computing the associated trigonometric Bernstein–Bézier-like patch with three denominator shape parameters (DT BB-like patch). The condition for G1 continuous jointing two DT BB-like patches over the triangular domain is deduced.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yasong Pu ◽  
Yaoyao Shi ◽  
Xiaojun Lin ◽  
Yuan Hu ◽  
Zhishan Li

Smooth orientation planning is beneficial for the working performance and service life of industrial robots, keeping robots from violent impacts and shocks caused by discontinuous orientation planning. Nevertheless, the popular used quaternion interpolations can hardly guarantee C2 continuity for multiorientation interpolation. Aiming at the problem, an efficient quaternion interpolation methodology based on logarithmic quaternion was proposed. Quaternions of more than two key orientations were expressed in the exponential forms of quaternion. These four-dimensional quaternions in space S3, when logarithms were taken for them, could be converted to three-dimensional points in space R3 so that B-spline interpolation could be applied freely to interpolate. The core formulas that B-spline interpolated points were mapped to quaternion were founded since B-spline interpolated point vectors were decomposed to the product of unitized forms and exponents were taken for them. The proposed methodology made B-spline curve applicable to quaternion interpolation through dimension reduction and the high-order continuity of the B-spline curve remained when B-spline interpolated points were mapped to quaternions. The function for reversely finding control points of B-spline curve with zero curvature at endpoints was derived, which helped interpolation curve become smoother and sleeker. The validity and rationality of the principle were verified by the study case. For comparison, the study case was also analyzed by the popular quaternion interpolations, Spherical Linear Interpolation (SLERP) and Spherical and Quadrangle (SQUAD). The comparison results demonstrated the proposed methodology had higher smoothness than SLERP and SQUAD and thus would provide better protection for robot end-effector from violent impacts led by unreasonable multiorientation interpolation. It should be noted that the proposed methodology can be extended to multiorientation quaternion interpolation with higher continuity than the second order.


2010 ◽  
Vol 26 (6-8) ◽  
pp. 801-811 ◽  
Author(s):  
Mingxiao Hu ◽  
Jieqing Feng ◽  
Jianmin Zheng

2010 ◽  
Vol 15 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Ashok Ganguly ◽  
Pranjali Arondekar

Author(s):  
Abdul Majeed ◽  
Mohsin Kamran ◽  
Noreen Asghar

Abstract This article focusses on the implementation of cubic B-spline approach to investigate numerical solutions of inhomogeneous time fractional nonlinear telegraph equation using Caputo derivative. L1 formula is used to discretize the Caputo derivative, while B-spline basis functions are used to interpolate the spatial derivative. For nonlinear part, the existing linearization formula is applied after generalizing it for all positive integers. The algorithm for the simulation is also presented. The efficiency of the proposed scheme is examined on three test problems with different initial boundary conditions. The influence of parameter α on the solution profile for different values is demonstrated graphically and numerically. Moreover, the convergence of the proposed scheme is analyzed and the scheme is proved to be unconditionally stable by von Neumann Fourier formula. To quantify the accuracy of the proposed scheme, error norms are computed and was found to be effective and efficient for nonlinear fractional partial differential equations (FPDEs).


Author(s):  
Joanna M. Brown ◽  
Malcolm I. G. Bloor ◽  
M. Susan Bloor ◽  
Michael J. Wilson

Abstract A PDE surface is generated by solving partial differential equations subject to boundary conditions. To obtain an approximation of the PDE surface in the form of a B-spline surface the finite element method, with the basis formed from B-spline basis functions, can be used to solve the equations. The procedure is simplest when uniform B-splines are used, but it is also feasible, and in some cases desirable, to use non-uniform B-splines. It will also be shown that it is possible, if required, to modify the non-uniform B-spline approximation in a variety of ways, using the properties of B-spline surfaces.


1994 ◽  
Vol 18 (3) ◽  
pp. 327-334 ◽  
Author(s):  
Kuo-Liang Chung ◽  
Wen-Ming Yan

Sign in / Sign up

Export Citation Format

Share Document