scholarly journals Multiplication of weak equivalence classes may be discontinuous

2019 ◽  
Vol 372 (11) ◽  
pp. 8091-8106
Author(s):  
Anton Bernshteyn
1982 ◽  
Vol 5 (4) ◽  
pp. 745-762
Author(s):  
Chong-Yun Chao ◽  
Caroline I. Deisher

By using Pólya's theorem of enumeration and de Bruijn's generalization of Pólya's theorem, we obtain the numbers of various weak equivalence classes of functions inRDrelative to permutation groupsGandHwhereRDis the set of all functions from a finite setDto a finite setR,Gacts onDandHacts onR. We present an algorithm for obtaining the equivalence classes of functions counted in de Bruijn's theorem, i.e., to determine which functions belong to the same equivalence class. We also use our algorithm to construct the family of non-isomorphicfm-graphs relative to a given group.


1991 ◽  
Vol 43 (2) ◽  
pp. 371-404 ◽  
Author(s):  
John Kalliongis ◽  
Andy Miller

The symmetries of manifolds are a focal point of study in low-dimensional topology and yet, outside of some totally asymmetrical 3- and 4-manifolds, there are very few cases in which a complete classification has been attained. In this work we provide such a classification for symmetries of the orientable and nonorientable 3-dimensional handlebodies of genus one. Our classification includes a description, up to isomorphism, of all of the finite groups which can arise as symmetries on these manifolds, as well as an enumeration of the different ways in which they can arise. To be specific, we will classify the equivalence, weak equivalence and strong equivalence classes of (effective) finite group actions on the genus one handlebodies.


2017 ◽  
Vol 38 (7) ◽  
pp. 2508-2536 ◽  
Author(s):  
PETER BURTON

We analyze the structure of the quotient $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ of the space of measure-preserving actions of a countable discrete group by the relation of weak equivalence. This space carries a natural operation of convex combination. We introduce a variant of an abstract construction of Fritz which encapsulates the convex combination operation on $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$. This formalism allows us to define the geometric notion of an extreme point. We also discuss a topology on $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ due to Abért and Elek in which it is Polish and compact, and show that this topology is equivalent to others defined in the literature. We show that the convex structure of $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ is compatible with the topology, and as a consequence deduce that $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ is path connected. Using ideas of Tucker-Drob, we are able to give a complete description of the topological and convex structure of $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ for amenable $\unicode[STIX]{x1D6E4}$ by identifying it with the simplex of invariant random subgroups. In particular, we conclude that $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ can be represented as a compact convex subset of a Banach space if and only if $\unicode[STIX]{x1D6E4}$ is amenable. In the case of general $\unicode[STIX]{x1D6E4}$ we prove a Krein–Milman-type theorem asserting that finite convex combinations of the extreme points of $\text{A}_{{\sim}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ are dense in this space. We also consider the space $\text{A}_{{\sim}_{s}}(\unicode[STIX]{x1D6E4},X,\unicode[STIX]{x1D707})$ of stable weak equivalence classes and show that it can always be represented as a compact convex subset of a Banach space. In the case of a free group $\mathbb{F}_{N}$, we show that if one restricts to the compact convex set $\text{FR}_{{\sim}_{s}}(\mathbb{F}_{N},X,\unicode[STIX]{x1D707})\subseteq \text{A}_{{\sim}_{s}}(\mathbb{F}_{N},X,\unicode[STIX]{x1D707})$ consisting of the stable weak equivalence classes of free actions, then the extreme points are dense in $\text{FR}_{{\sim}_{s}}(\mathbb{F}_{N},X,\unicode[STIX]{x1D707})$.


2019 ◽  
Vol 40 (10) ◽  
pp. 2681-2733 ◽  
Author(s):  
PETER J. BURTON ◽  
ALEXANDER S. KECHRIS

This paper concerns the study of the global structure of measure-preserving actions of countable groups on standard probability spaces. Weak containment is a hierarchical notion of complexity of such actions, motivated by an analogous concept in the theory of unitary representations. This concept gives rise to an associated notion of equivalence of actions, called weak equivalence, which is much coarser than the notion of isomorphism (conjugacy). It is well understood now that, in general, isomorphism is a very complex notion, a fact which manifests itself, for example, in the lack of any reasonable structure in the space of actions modulo isomorphism. On the other hand, the space of weak equivalence classes is quite well behaved. Another interesting fact that relates to the study of weak containment is that many important parameters associated with actions, such as the type, cost, and combinatorial parameters, turn out to be invariants of weak equivalence and in fact exhibit desirable monotonicity properties with respect to the pre-order of weak containment, a fact that can be useful in certain applications. There has been quite a lot of activity in this area in the last few years, and our goal in this paper is to provide a survey of this work.


2020 ◽  
Vol 20 (4) ◽  
pp. 483-498
Author(s):  
Carlo Petronio

AbstractWe continue our computation, using a combinatorial method based on Gronthendieck’s dessins d’enfant, of the number of (weak) equivalence classes of surface branched covers matching certain specific branch data. In this note we concentrate on data with the surface of genus g as source surface, the sphere as target surface, 3 branching points, degree 2k, and local degrees over the branching points of the form [2, …, 2], [2h + 1, 3, 2, …, 2], $\begin{array}{} \displaystyle \pi=[d_i]_{i=1}^\ell. \end{array}$ We compute the corresponding (weak) Hurwitz numbers for several values of g and h, getting explicit arithmetic formulae in terms of the di’s.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jördis-Ann Schüler ◽  
Steffen Rechner ◽  
Matthias Müller-Hannemann

AbstractAn important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equivalence classes and an effective equivalence test. Based on extensive computational experiments, we show that our algorithm is significantly faster than existing implementations within , and . We provide our Java implementation as an easy-to-use, open-source package (via GitHub) which is compatible with . It fully supports the distinction of different isotopes and molecules with radicals.


2010 ◽  
Vol 17 (2) ◽  
pp. 229-240
Author(s):  
Marek Golasiński

Abstract An equivariant disconnected Sullivan–de Rham equivalence is developed using Kan's result on diagram categories. Given a finite Hamiltonian group G, let X be a G-simplicial set. It is shown that the associated system of algebras indexed by the category 𝒪(G) of a canonical orbit can be “approximated” (up to a weak equivalence) by such a system ℳ X with the properties required by nonequivariant minimal algebras.


1989 ◽  
Vol 12 (3) ◽  
pp. 317-356
Author(s):  
David C. Rine

Partitioning and allocating of software components are two important parts of software design in distributed software engineering. This paper presents two general algorithms that can, to a limited extent, be used as tools to assist in partitioning software components represented as objects in a distributed software design environment. One algorithm produces a partition (equivalence classes) of the objects, and a second algorithm allows a minimum amount of redundancy. Only binary relationships of actions (use or non-use) are considered in this paper.


Sign in / Sign up

Export Citation Format

Share Document