scholarly journals Smooth entrywise positivity preservers, a Horn-Loewner master theorem, and symmetric function identities

2021 ◽  
Author(s):  
Apoorva Khare

2007 ◽  
Vol 14 (4) ◽  
pp. 807-808
Author(s):  
Giorgi Oniani

Abstract Corrections to [Oniani, Georgian Math. J. 13: 501–514, 2006] are listed.



2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Huan-Nan Shi ◽  
Pei Wang ◽  
Jian Zhang




2011 ◽  
Vol 284 (5-6) ◽  
pp. 653-663 ◽  
Author(s):  
Y.-M. Chu ◽  
G.-D. Wang ◽  
X.-H. Zhang


1999 ◽  
Vol 205 (1-3) ◽  
pp. 229-234 ◽  
Author(s):  
Vesselin Gasharov


1983 ◽  
Vol 4 (2) ◽  
pp. 179-193 ◽  
Author(s):  
I. P. Goulden ◽  
D. M. Jackson ◽  
J. W. Reilly
Keyword(s):  


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Francois Viard

International audience We construct a poset from a simple acyclic digraph together with a valuation on its vertices, and we compute the values of its Möbius function. We show that the weak order on Coxeter groups $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, and the flag weak order on the wreath product &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduced by Adin, Brenti and Roichman (2012), are special instances of our construction. We conclude by briefly explaining how to use our work to define quasi-symmetric functions, with a special emphasis on the $A$<sub>$n-1$</sub> case, in which case we obtain the classical Stanley symmetric function. On construit une famille d’ensembles ordonnés à partir d’un graphe orienté, simple et acyclique munit d’une valuation sur ses sommets, puis on calcule les valeurs de leur fonction de Möbius respective. On montre que l’ordre faible sur les groupes de Coxeter $A$<sub>$n-1$</sub>, $B$<sub>$n$</sub>, $Ã$<sub>$n$</sub>, ainsi qu’une variante de l’ordre faible sur les produits en couronne &#8484;<sub>$r$</sub> &#8768; $S$<sub>$n$</sub> introduit par Adin, Brenti et Roichman (2012), sont des cas particuliers de cette construction. On conclura en expliquant brièvement comment ce travail peut-être utilisé pour définir des fonction quasi-symétriques, en insistant sur l’exemple de l’ordre faible sur $A$<sub>$n-1$</sub> où l’on obtient les séries de Stanley classiques.



10.37236/518 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Brandon Humpert

The chromatic symmetric function $X_G$ of a graph $G$ was introduced by Stanley. In this paper we introduce a quasisymmetric generalization $X^k_G$ called the $k$-chromatic quasisymmetric function of $G$ and show that it is positive in the fundamental basis for the quasisymmetric functions. Following the specialization of $X_G$ to $\chi_G(\lambda)$, the chromatic polynomial, we also define a generalization $\chi^k_G(\lambda)$ and show that evaluations of this polynomial for negative values generalize a theorem of Stanley relating acyclic orientations to the chromatic polynomial.



1969 ◽  
Vol 12 (5) ◽  
pp. 615-623 ◽  
Author(s):  
K.V. Menon

The generating series for the elementary symmetric function Er, the complete symmetric function Hr, are defined byrespectively.



Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1503 ◽  
Author(s):  
Pshtiwan Othman Mohammed ◽  
Thabet Abdeljawad ◽  
Artion Kashuri

There have been many different definitions of fractional calculus presented in the literature, especially in recent years. These definitions can be classified into groups with similar properties. An important direction of research has involved proving inequalities for fractional integrals of particular types of functions, such as Hermite–Hadamard–Fejer (HHF) inequalities and related results. Here we consider some HHF fractional integral inequalities and related results for a class of fractional operators (namely, the weighted fractional operators), which apply to function of convex type with respect to an increasing function involving a positive weighted symmetric function. We can conclude that all derived inequalities in our study generalize numerous well-known inequalities involving both classical and Riemann–Liouville fractional integral inequalities.



Sign in / Sign up

Export Citation Format

Share Document