On the selfadjointness and maximal dissipativity of differential operators for functions of an infinite-dimensional argument

Author(s):  
Yu. L. Daletskiĭ
1999 ◽  
Vol 153 ◽  
pp. 101-118 ◽  
Author(s):  
V. Bogachev ◽  
P. Lescot ◽  
M. Röckner

AbstractA martingale problem for pseudo-differential operators on infinite dimensional spaces is formulated and the existence of a solution is proved. Applications to infinite dimensional “stable-like” processes are presented.


1997 ◽  
Vol 12 (22) ◽  
pp. 1589-1595 ◽  
Author(s):  
E. H. El Kinani

The class of pseudo-differential operators Lie algebra [Formula: see text] on the quantum plane [Formula: see text] is introduced. The embedding of certain infinite-dimensional Lie algebras which occur in the physics literature in [Formula: see text] is discussed as well as the correspondence between [Formula: see text] and [Formula: see text] as k→+∞ is examined.


2001 ◽  
Vol 16 (29) ◽  
pp. 4769-4801 ◽  
Author(s):  
KONSTANTIN G. BORESKOV ◽  
JUAN CARLOS LOPEZ VIEYRA ◽  
ALEXANDER V. TURBINER

It is shown that the F4 rational and trigonometric integrable systems are exactly-solvable for arbitrary values of the coupling constants. Their spectra are found explicitly while eigenfunctions are by pure algebraic means. For both systems new variables are introduced in which the Hamiltonian has an algebraic form being also (block)-triangular. These variables are invariant with respect to the Weyl group of F4 root system and can be obtained by averaging over an orbit of the Weyl group. An alternative way of finding these variables exploiting a property of duality of the F4 model is presented. It is demonstrated that in these variables the Hamiltonian of each model can be expressed as a quadratic polynomial in the generators of some infinite-dimensional Lie algebra of differential operators in a finite-dimensional representation. Both Hamiltonians preserve the same flag of spaces of polynomials and each subspace of the flag coincides with the finite-dimensional representation space of this algebra. Quasi-exactly-solvable generalization of the rational F4 model depending on two continuous and one discrete parameters is found.


Author(s):  
Boris O. Volkov

We study the Lévy infinite-dimensional differential operators (differential operators defined by the analogy with the Lévy Laplacian) and their relationship to the Yang–Mills equations. We consider the parallel transport on the space of curves as an infinite-dimensional analogue of chiral fields and show that it is a solution to the system of differential equations if and only if the associated connection is a solution to the Yang–Mills equations. This system is an analogue of the equations of motion of chiral fields and contains the Lévy divergence. The systems of infinite-dimensional equations containing Lévy differential operators, that are equivalent to the Yang–Mills–Higgs equations and the Yang–Mills–Dirac equations (the equations of quantum chromodynamics), are obtained. The equivalence of two ways to define Lévy differential operators is shown.


Author(s):  
Lisa C. Jeffrey ◽  
James A. Mracek

This chapter investigates the Duistermaat–Heckman theorem using the theory of hyperfunctions. In applications involving Hamiltonian torus actions on infinite-dimensional manifolds, the more general theory seems to be necessary in order to accommodate the existence of the infinite-order differential operators which arise from the isotropy representations on the tangent spaces to fixed points. The chapter quickly reviews the theory of hyperfunctions and their Fourier transforms. It then applies this theory to construct a hyperfunction analogue of the Duistermaat–Heckman distribution. The main goal will be to study the Duistermaat–Heckman distribution of the loop space of SU(2) but it will also characterize the singular locus of the moment map for the Hamiltonian action of T×S 1 on the loop space of G. The main goal of this chapter is to present a Duistermaat–Heckman hyperfunction arising from a Hamiltonian group action on an infinite-dimensional manifold.


2021 ◽  
Vol 13 ◽  
Author(s):  
Todor D. Todorov

  We discuss linear algebra of infinite-dimensional vector spaces in terms of algebraic (Hamel) bases. As an application we prove the surjectivity of a large class of linear partial differential operators with smooth ($\mathcal C^\infty$-coefficients) coefficients, called in the article \emph{regular}, acting on the algebraic dual $\mathcal D^*(\Omega)$ of the space of test-functions $\mathcal D(\Omega)$. The surjectivity of the partial differential operators guarantees solvability of the corresponding partial differential equations within $\mathcal D^*(\Omega)$. We discuss our result in contrast to and comparison with similar results about the restrictions of the regular operators on the space of Schwartz distribution $\mathcal D^\prime(\Omega)$, where these operators are often non-surjective. 


1998 ◽  
Vol 149 ◽  
pp. 173-192 ◽  
Author(s):  
Dong Myung Chung ◽  
Un Cig Ji ◽  
Nobuaki Obata

Abstract.A generalized number operator and a generalized Gross Laplacian are introduced on the basis of white noise distribution theory. The equicontinuity is examined and associated one-parameter transformation groups are constructed. An infinite dimensional analogue of ax + b group and Cauchy problems on white noise space are discussed.


2010 ◽  
Vol 25 (30) ◽  
pp. 5567-5594 ◽  
Author(s):  
MARCOS A. G. GARCÍA ◽  
ALEXANDER V. TURBINER

The quantum H3 integrable system is a three-dimensional system with rational potential related to the noncrystallographic root system H3. It is shown that the gauge-rotated H3 Hamiltonian as well as one of the integrals, when written in terms of the invariants of the Coxeter group H3, is in algebraic form: it has polynomial coefficients in front of derivatives. The Hamiltonian has infinitely-many finite-dimensional invariant subspaces in polynomials, they form the infinite flag with the characteristic vector [Formula: see text]. One among possible integrals is found (of the second order) as well as its algebraic form. A hidden algebra of the H3 Hamiltonian is determined. It is an infinite-dimensional, finitely-generated algebra of differential operators possessing finite-dimensional representations characterized by a generalized Gauss decomposition property. A quasi-exactly-solvable integrable generalization of the model is obtained. A discrete integrable model on the uniform lattice in a space of H3-invariants "polynomially"-isospectral to the quantum H3 model is defined.


Sign in / Sign up

Export Citation Format

Share Document