Asymptotic behavior of Fredholm determinants of truncated integral operators with matrix-valued kernels depending on the difference of the arguments

Author(s):  
L. V. Mikaelyan
2001 ◽  
Vol 8 (2) ◽  
pp. 323-332
Author(s):  
A. Meskhi

Abstract The asymptotic behavior of the singular and entropy numbers is established for the Erdelyi–Köber and Hadamard integral operators (see, e.g., [Samko, Kilbas and Marichev, Integrals and derivatives. Theoryand Applications, Gordon and Breach Science Publishers, 1993]) acting in weighted L 2 spaces. In some cases singular value decompositions are obtained as well for these integral transforms.


1991 ◽  
Vol 28 (4) ◽  
pp. 717-726 ◽  
Author(s):  
Claude Bélisle ◽  
Julian Faraway

Recent results on the winding angle of the ordinary two-dimensional random walk on the integer lattice are reviewed. The difference between the Brownian motion winding angle and the random walk winding angle is discussed. Other functionals of the random walk, such as the maximum winding angle, are also considered and new results on their asymptotic behavior, as the number of steps increases, are presented. Results of computer simulations are presented, indicating how well the asymptotic distributions fit the exact distributions for random walks with 10m steps, for m = 2, 3, 4, 5, 6, 7.


2020 ◽  
Vol 36 (3) ◽  
pp. 423-431
Author(s):  
VIJAY GUPTA

We introduce in the present note a unified approach to define integral operators, which include many well-known operators viz. Durrmeyer type operators, mixed hybrid operators as special cases. We also obtain the quantitative estimates between the difference of such integral operators with the discrete operators having same and different basis functions. Our operators proposed here give a very large class of integral operators, which have been discussed and proposed by several researchers in past seven decades.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Lin-Xia Hu

The main goal of this paper is to investigate the global asymptotic behavior of the difference system xn+1=γ1yn/A1+xn,  yn+1=β2xn/B2+yn,  n=0,1,2,…. with γ1,β2,A1,B2∈(0,∞) and the initial condition (x0,y0)∈[0,∞)×[0,∞). We obtain some global attractivity results of this system for different values of the parameters, which answer the open problem proposed in “Rational systems in the plane, J. Difference Equ. Appl. 15 (2009), 303-323”.


1970 ◽  
Vol 4 (5) ◽  
pp. 1151-1168 ◽  
Author(s):  
M Š Birman ◽  
M Z Solomjak

1977 ◽  
Vol 18 (1) ◽  
pp. 1-15 ◽  
Author(s):  
E. L. Aleksandrov ◽  
B. I. Kirichenko

2015 ◽  
Vol 29 (23) ◽  
pp. 1550173 ◽  
Author(s):  
Hanlin Chen ◽  
Renfang Wu ◽  
Guihua Huang ◽  
Hanyuan Deng

The number of dimer–monomers (matchings) of a graph [Formula: see text] is an important graph parameter in statistical physics. Following recent research, we study the asymptotic behavior of the number of dimer–monomers [Formula: see text] on the Towers of Hanoi graphs and another variation of the Sierpiński graphs which is similar to the Towers of Hanoi graphs, and derive the recursion relations for the numbers of dimer–monomers. Upper and lower bounds for the entropy per site, defined as [Formula: see text], where [Formula: see text] is the number of vertices in a graph [Formula: see text], on these Sierpiński graphs are derived in terms of the numbers at a certain stage. As the difference between these bounds converges quickly to zero as the calculated stage increases, the numerical value of the entropy can be evaluated with more than a hundred significant figures accuracy.


Sign in / Sign up

Export Citation Format

Share Document