scholarly journals Nascent Polypeptide–associated Complex Stimulates Protein Import into Yeast Mitochondria

1999 ◽  
Vol 10 (10) ◽  
pp. 3289-3299 ◽  
Author(s):  
Ursula Fünfschilling ◽  
Sabine Rospert

To identify yeast cytosolic proteins that mediate targeting of precursor proteins to mitochondria, we developed an in vitro import system consisting of purified yeast mitochondria and a radiolabeled mitochondrial precursor protein whose C terminus was still attached to the ribosome. In this system, the N terminus of the nascent chain was translocated across both mitochondrial membranes, generating a translocation intermediate spanning both membranes. The nascent chain could then be completely chased into the mitochondrial matrix after release from the ribosome. Generation of this import intermediate was dependent on a mitochondrial membrane potential, mitochondrial surface proteins, and was stimulated by proteins that could be released from the ribosomes by high salt. The major salt-released stimulatory factor was yeast nascent polypeptide–associated complex (NAC). Purified NAC fully restored import of salt-washed ribosome-bound nascent chains by enhancing productive binding of the chains to mitochondria. We propose that ribosome-associated NAC facilitates recognition of nascent precursor chains by the mitochondrial import machinery.

2016 ◽  
Vol 397 (11) ◽  
pp. 1097-1114 ◽  
Author(s):  
Sebastian P. Straub ◽  
Sebastian B. Stiller ◽  
Nils Wiedemann ◽  
Nikolaus Pfanner

Abstract Mitochondria contain elaborate machineries for the import of precursor proteins from the cytosol. The translocase of the outer mitochondrial membrane (TOM) performs the initial import of precursor proteins and transfers the precursors to downstream translocases, including the presequence translocase and the carrier translocase of the inner membrane, the mitochondrial import and assembly machinery of the intermembrane space, and the sorting and assembly machinery of the outer membrane. Although the protein translocases can function as separate entities in vitro, recent studies revealed a close and dynamic cooperation of the protein import machineries to facilitate efficient transfer of precursor proteins in vivo. In addition, protein translocases were found to transiently interact with distinct machineries that function in the respiratory chain or in the maintenance of mitochondrial membrane architecture. Mitochondrial protein import is embedded in a regulatory network that ensures protein biogenesis, membrane dynamics, bioenergetic activity and quality control.


2019 ◽  
Vol 218 (6) ◽  
pp. 2021-2034 ◽  
Author(s):  
Fabian B. Romano ◽  
Neil B. Blok ◽  
Tom A. Rapoport

Peroxisomes import their luminal proteins from the cytosol. Most substrates contain a C-terminal Ser-Lys-Leu (SKL) sequence that is recognized by the receptor Pex5. Pex5 binds to peroxisomes via a docking complex containing Pex14, and recycles back into the cytosol following its mono-ubiquitination at a conserved Cys residue. The mechanism of peroxisome protein import remains incompletely understood. Here, we developed an in vitro import system based on Xenopus egg extracts. Import is dependent on the SKL motif in the substrate and on the presence of Pex5 and Pex14, and is sustained by ATP hydrolysis. A protein lacking an SKL sequence can be coimported, providing strong evidence for import of a folded protein. The conserved cysteine in Pex5 is not essential for import or to clear import sites for subsequent rounds of translocation. This new in vitro assay will be useful for further dissecting the mechanism of peroxisome protein import.


1970 ◽  
Vol 45 (1) ◽  
pp. 130-145 ◽  
Author(s):  
G. Blobel ◽  
D. D. Sabatini

Free ribosomes containing nascent polypeptide chains labeled in vitro were submitted to proteolysis at 0° by a mixture of trypsin and chymotrypsin. Sucrose gradient analysis showed that polysome patterns are retained even after 24 hr of proteolysis in the cold, while messenger RNA-free ribosomes (generated progressively during in vitro incorporation) are, within 2 hr, completely dissociated into subunits by trypsin. Although ribosomes and subunits are not extensively degraded into smaller fragments during low temperature proteolysis, changes in the acrylamide gel electrophoresis pattern showed that most ribosomal proteins are accessible to and are partially degraded by the proteases. Ribosome-bound nascent polypeptides are partially resistant to proteolysis at 0°, although they are totally digested at 37° or when the ribosomal subunit structure is disrupted by other means. Radioactivity incorporated into nascent chains during incubation times shorter than 3 min was mostly resistant to digestion at 0°. A larger fraction of the initial radioactivity became degraded in ribosomes which incorporated for longer times. In these ribosomes, the amount of radioactivity which was resistant to proteolysis was constant and independent of the initial value, which reflects the labeled length of the nascent chains. These results suggest that the growing end of the nascent polypeptide is resistant to digestion and is protected from proteolytic attack by the ribosomal structure. A pulse and chase experiment confirmed this suggestion, showing that the protected segment is located at the carboxy-terminal end of the nascent chain. The protected segment was contained in the large ribosomal subunit and had a length of ∼39 amino acid residues, as estimated by chromatography on Sephadex G-50.


2016 ◽  
Vol 113 (7) ◽  
pp. E829-E838 ◽  
Author(s):  
Yuhei Chadani ◽  
Tatsuya Niwa ◽  
Shinobu Chiba ◽  
Hideki Taguchi ◽  
Koreaki Ito

Although the importance of the nonuniform progression of elongation in translation is well recognized, there have been few attempts to explore this process by directly profiling nascent polypeptides, the relevant intermediates of translation. Such approaches will be essential to complement other approaches, including ribosome profiling, which is extremely powerful but indirect with respect to the actual translation processes. Here, we use the nascent polypeptide's chemical trait of having a covalently attached tRNA moiety to detect translation intermediates. In a case study,Escherichia coliSecA was shown to undergo nascent polypeptide-dependent translational pauses. We then carried out integrated in vivo and in vitro nascent chain profiling (iNP) to characterize 1,038 proteome members ofE.colithat were encoded by the first quarter of the chromosome with respect to their propensities to accumulate polypeptidyl–tRNA intermediates. A majority of them indeed undergo single or multiple pauses, some occurring only in vitro, some occurring only in vivo, and some occurring both in vivo and in vitro. Thus, translational pausing can be intrinsically robust, subject to in vivo alleviation, or require in vivo reinforcement. Cytosolic and membrane proteins tend to experience different classes of pauses; membrane proteins often pause multiple times in vivo. We also note that the solubility of cytosolic proteins correlates with certain categories of pausing. Translational pausing is widespread and diverse in nature.


2000 ◽  
Vol 11 (5) ◽  
pp. 1523-1533 ◽  
Author(s):  
Kazuhito Ohishi ◽  
Norimitsu Inoue ◽  
Yusuke Maeda ◽  
Junji Takeda ◽  
Howard Riezman ◽  
...  

Many eukaryotic cell surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). The GPI is attached to proteins that have a GPI attachment signal peptide at the carboxyl terminus. The GPI attachment signal peptide is replaced by a preassembled GPI in the endoplasmic reticulum by a transamidation reaction through the formation of a carbonyl intermediate. GPI transamidase is a key enzyme of this posttranslational modification. Here we report that Gaa1p and Gpi8p are components of a GPI transamidase. To determine a role of Gaa1p we disrupted aGAA1/GPAA1 gene in mouse F9 cells by homologous recombination. GAA1 knockout cells were defective in the formation of carbonyl intermediates between precursor proteins and transamidase as determined by an in vitro GPI-anchoring assay. We also show that cysteine and histidine residues of Gpi8p, which are conserved in members of a cysteine protease family, are essential for generation of a carbonyl intermediate. This result suggests that Gpi8p is a catalytic component that cleaves the GPI attachment signal peptide. Moreover, Gaa1p and Gpi8p are associated with each other. Therefore, Gaa1p and Gpi8p constitute a GPI transamidase and cooperate in generating a carbonyl intermediate, a prerequisite for GPI attachment.


2012 ◽  
Vol 23 (17) ◽  
pp. 3420-3428 ◽  
Author(s):  
Mascha Pusnik ◽  
Jan Mani ◽  
Oliver Schmidt ◽  
Moritz Niemann ◽  
Silke Oeljeklaus ◽  
...  

The mitochondrial outer membrane protein Tom40 is the general entry gate for imported proteins in essentially all eukaryotes. Trypanosomatids lack Tom40, however, and use instead a protein termed the archaic translocase of the outer mitochondrial membrane (ATOM). Here we report the discovery of pATOM36, a novel essential component of the trypanosomal outer membrane protein import system that interacts with ATOM. pATOM36 is not related to known Tom proteins from other organisms and mediates the import of matrix proteins. However, there is a group of precursor proteins whose import is independent of pATOM36. Domain-swapping experiments indicate that the N-terminal presequence-containing domain of the substrate proteins at least in part determines the dependence on pATOM36. Secondary structure profiling suggests that pATOM36 is composed largely of α-helices and its assembly into the outer membrane is independent of the sorting and assembly machinery complex. Taken together, these results show that pATOM36 is a novel component associated with the ATOM complex that promotes the import of a subpopulation of proteins into the mitochondrial matrix.


1988 ◽  
Vol 107 (6) ◽  
pp. 2051-2057 ◽  
Author(s):  
H Murakami ◽  
D Pain ◽  
G Blobel

We have developed an in vitro system in which the posttranslational import of Put2 (delta-pyrroline-5-carboxylate dehydrogenase), into yeast mitochondria is dependent on the addition of yeast postribosomal supernatant (PRS). When mRNA for a nuclear-encoded yeast mitochondrial matrix protein, Put2, was translated in a wheat germ cell-free system, import into posttranslationally added yeast mitochondria was negligible. However, when a yeast PRS was added, significant import was observed. The import stimulating activity of the yeast PRS was shown to consist of at least two distinct factors. One of these is the recently purified 70-kD heat shock-related protein Ssalp/Ssa2p, two proteins that are 98% homologous. The other factor is an N-ethylmaleimide-sensitive protein(s). Both factors act synergistically.


2004 ◽  
Vol 279 (19) ◽  
pp. 19464-19470 ◽  
Author(s):  
Takeyoshi Asai ◽  
Takashi Takahashi ◽  
Masatoshi Esaki ◽  
Shuh-ichi Nishikawa ◽  
Kenzo Ohtsuka ◽  
...  

Protein import into mitochondria requires the energy of ATP hydrolysis inside and/or outside mitochondria. Although the role of ATP in the mitochondrial matrix in mitochondrial protein import has been extensively studied, the role of ATP outside mitochondria (external ATP) remains only poorly characterized. Here we developed a protocol for depletion of external ATP without significantly reducing the import competence of precursor proteins synthesizedin vitrowith reticulocyte lysate. We tested the effects of external ATP on the import of various precursor proteins into isolated yeast mitochondria. We found that external ATP is required for maintenance of the import competence of mitochondrial precursor proteins but that, once they bind to mitochondria, the subsequent translocation of presequence-containing proteins, but not the ADP/ATP carrier, proceeds independently of external ATP. Because depletion of cytosolic Hsp70 led to a decrease in the import competence of mitochondrial precursor proteins, external ATP is likely utilized by cytosolic Hsp70. In contrast, the ADP/ATP carrier requires external ATP for efficient import into mitochondria even after binding to mitochondria, a situation that is only partly attributed to cytosolic Hsp70.


2006 ◽  
Vol 175 (6) ◽  
pp. 893-900 ◽  
Author(s):  
Ming-Lun Chou ◽  
Chiung-Chih Chu ◽  
Lih-Jen Chen ◽  
Mitsuru Akita ◽  
Hsou-min Li

Three components of the chloroplast protein translocon, Tic110, Hsp93 (ClpC), and Tic40, have been shown to be important for protein translocation across the inner envelope membrane into the stroma. We show the molecular interactions among these three components that facilitate processing and translocation of precursor proteins. Transit-peptide binding by Tic110 recruits Tic40 binding to Tic110, which in turn causes the release of transit peptides from Tic110, freeing the transit peptides for processing. The Tic40 C-terminal domain, which is homologous to the C terminus of cochaperones Sti1p/Hop and Hip but with no known function, stimulates adenosine triphosphate hydrolysis by Hsp93. Hsp93 dissociates from Tic40 in the presence of adenosine diphosphate, suggesting that Tic40 functions as an adenosine triphosphatase activation protein for Hsp93. Our data suggest that chloroplasts have evolved the Tic40 cochaperone to increase the efficiency of precursor processing and translocation.


1994 ◽  
Vol 5 (4) ◽  
pp. 465-474 ◽  
Author(s):  
C Wachter ◽  
G Schatz ◽  
B S Glick

ATP is needed for the import of precursor proteins into mitochondria. However, the role of ATP and its site of action have been unclear. We have now investigated the ATP requirements for protein import into the mitochondrial matrix. These experiments employed an in vitro system that allowed ATP levels to be manipulated both inside and outside the mitochondrial inner membrane. Our results indicate that there are two distinct ATP requirements for mitochondrial protein import. ATP in the matrix is always needed for complete import of precursor proteins into this compartment, even when the precursors are presented to mitochondria in an unfolded conformation. In contrast, the requirement for external ATP is precursor-specific; depletion of external ATP strongly inhibits import of some precursors but has little or no effect with other precursors. A requirement for external ATP can often be overcome by denaturing the precursor with urea. We suggest that external ATP promotes the release of precursors from cytosolic chaperones, whereas matrix ATP drives protein translocation across the inner membrane.


Sign in / Sign up

Export Citation Format

Share Document