scholarly journals The nuclear-mitotic apparatus protein is important in the establishment and maintenance of the bipolar mitotic spindle apparatus.

1992 ◽  
Vol 3 (11) ◽  
pp. 1259-1267 ◽  
Author(s):  
C H Yang ◽  
M Snyder

The formation and maintenance of the bipolar mitotic spindle apparatus require a complex and balanced interplay of several mechanisms, including the stabilization and separation of polar microtubules and the action of various microtubule motors. Nonmicrotubule elements are also present throughout the spindle apparatus and have been proposed to provide a structural support for the spindle. The Nuclear-Mitotic Apparatus protein (NuMA) is an abundant 240 kD protein that is present in the nucleus of interphase cells and concentrates in the polar regions of the spindle apparatus during mitosis. Sequence analysis indicates that NuMA possesses an unusually long alpha-helical central region characteristic of many filament forming proteins. In this report we demonstrate that microinjection of anti-NuMA antibodies into interphase and prophase cells results in a failure to form a mitotic spindle apparatus. Furthermore, injection of metaphase cells results in the collapse of the spindle apparatus into a monopolar microtubule array. These results identify for the first time a nontubulin component important for both the establishment and stabilization of the mitotic spindle apparatus in multicellular organisms. We suggest that nonmicrotubule structural components may be important for these processes.

1990 ◽  
Vol 111 (3) ◽  
pp. 1039-1045 ◽  
Author(s):  
J H Hayden ◽  
S S Bowser ◽  
C L Rieder

When viewed by light microscopy the mitotic spindle in newt pneumocytes assembles in an optically clear area of cytoplasm, virtually devoid of mitochondria and other organelles, which can be much larger than the forming spindle. This unique optical property has allowed us to examine the behavior of individual microtubules, at the periphery of asters in highly flattened living prometaphase cells, by video-enhanced differential interference-contrast light microscopy and digital image processing. As in interphase newt pneumocytes (Cassimeris, L., N. K. Pryer, and E. D. Salmon. 1988. J. Cell Biol. 107:2223-2231), centrosomal (i.e., astral) microtubules in prometaphase cells appear to exhibit dynamic instability, elongating at a mean rate of 14.3 +/- 5.1 microns/min (N = 19) and shortening at approximately 16 microns/min. Under favorable conditions the initial interaction between a kinetochore and the forming spindle can be directly observed. During this process the unattached chromosome is repeatedly probed by microtubules projecting from one of the polar regions. When one of these microtubules contacts the primary constriction the chromosome rapidly undergoes poleward translocation. Our observations on living mitotic cells directly demonstrate, for the first time, that chromosome attachment results from an interaction between astral microtubules and the kinetochore.


1994 ◽  
Vol 107 (6) ◽  
pp. 1389-1402 ◽  
Author(s):  
T.K. Tang ◽  
C.J. Tang ◽  
Y.J. Chao ◽  
C.W. Wu

We have recently shown that the nuclear mitotic apparatus protein (NuMA) is composed of at least three isoforms that differ mainly at the carboxy terminus, and are generated by alternative splicing of a common mRNA precursor from a single NuMA gene (J. Cell Sci. (1993) 104, 249–260). Transient expression of human NuMA-1 isoform (T33/p230) in Chinese hamster ovary polyoma (CHOP) cells showed that NuMA-1 was present in interphase nuclei and was concentrated at the polar regions of the spindle apparatus in mitotic cells. However, expression of two other isoforms (NuMA-m and -s) revealed a distinct subcellular localization. NuMA-m (U4/p195) and NuMA-s (U6/p194) were present in the interphase cytosol and appeared to be mainly located at the centrosomal region. When cells entered into mitosis, however, NuMA-m and -s moved to the mitotic spindle pole. Analysis of a series of linker scanning-mutants and NuMA/beta-galactosidase chimeric proteins showed that residues 1972–2007 of NuMA-1 constitute a novel nuclear localization signal (NLS) and residues 1538–2115 are necessary and sufficient for spindle association. Further analysis of the NLS by site-specific mutagenesis indicated that Lys1988 is essential for nuclear targeting, whereas Arg1984 is not. These results have allowed us tentatively to assign specific biological activities to distinct structural domains of the NuMA polypeptide.


2016 ◽  
Vol 291 (38) ◽  
pp. 20055-20067 ◽  
Author(s):  
Xiaogang Chu ◽  
Xuanyu Chen ◽  
Qingwen Wan ◽  
Zhen Zheng ◽  
Quansheng Du

1996 ◽  
Vol 135 (2) ◽  
pp. 399-414 ◽  
Author(s):  
T Gaglio ◽  
A Saredi ◽  
J B Bingham ◽  
M J Hasbani ◽  
S R Gill ◽  
...  

We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end-directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors.


Author(s):  
J.R. Mcintosh

The mitotic apparatus is a structure of obvious biological and medical interest, but it has proved to be a difficult cellular machine to understand. The chemical composition of the spindle is only slightly elucidated, largely because of the difficulties in preparing useful isolates of the structure. Chemical studies of the mitotic spindle have been reviewed elsewhere (Mcintosh, 1977), and will not be discussed further here. One would think that structural studies on the mitotic apparatus (MA) in situ would be straightforward, but even with this approach there is some disagreement in the results obtained with various methods and by different investigators. In this paper I will review briefly the approaches which have been used in structural studies of the MA, pointing out the strengths and problems of each approach. I will summarize the principal findings of the different methods, and identify what seem to be fruitful avenues for further work.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


1994 ◽  
Vol 124 (3) ◽  
pp. 223-233 ◽  
Author(s):  
CL Rieder ◽  
ED Salmon

We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle.


Sign in / Sign up

Export Citation Format

Share Document