Nuclear mitotic apparatus protein (NuMA): spindle association, nuclear targeting and differential subcellular localization of various NuMA isoforms

1994 ◽  
Vol 107 (6) ◽  
pp. 1389-1402 ◽  
Author(s):  
T.K. Tang ◽  
C.J. Tang ◽  
Y.J. Chao ◽  
C.W. Wu

We have recently shown that the nuclear mitotic apparatus protein (NuMA) is composed of at least three isoforms that differ mainly at the carboxy terminus, and are generated by alternative splicing of a common mRNA precursor from a single NuMA gene (J. Cell Sci. (1993) 104, 249–260). Transient expression of human NuMA-1 isoform (T33/p230) in Chinese hamster ovary polyoma (CHOP) cells showed that NuMA-1 was present in interphase nuclei and was concentrated at the polar regions of the spindle apparatus in mitotic cells. However, expression of two other isoforms (NuMA-m and -s) revealed a distinct subcellular localization. NuMA-m (U4/p195) and NuMA-s (U6/p194) were present in the interphase cytosol and appeared to be mainly located at the centrosomal region. When cells entered into mitosis, however, NuMA-m and -s moved to the mitotic spindle pole. Analysis of a series of linker scanning-mutants and NuMA/beta-galactosidase chimeric proteins showed that residues 1972–2007 of NuMA-1 constitute a novel nuclear localization signal (NLS) and residues 1538–2115 are necessary and sufficient for spindle association. Further analysis of the NLS by site-specific mutagenesis indicated that Lys1988 is essential for nuclear targeting, whereas Arg1984 is not. These results have allowed us tentatively to assign specific biological activities to distinct structural domains of the NuMA polypeptide.

1992 ◽  
Vol 3 (11) ◽  
pp. 1259-1267 ◽  
Author(s):  
C H Yang ◽  
M Snyder

The formation and maintenance of the bipolar mitotic spindle apparatus require a complex and balanced interplay of several mechanisms, including the stabilization and separation of polar microtubules and the action of various microtubule motors. Nonmicrotubule elements are also present throughout the spindle apparatus and have been proposed to provide a structural support for the spindle. The Nuclear-Mitotic Apparatus protein (NuMA) is an abundant 240 kD protein that is present in the nucleus of interphase cells and concentrates in the polar regions of the spindle apparatus during mitosis. Sequence analysis indicates that NuMA possesses an unusually long alpha-helical central region characteristic of many filament forming proteins. In this report we demonstrate that microinjection of anti-NuMA antibodies into interphase and prophase cells results in a failure to form a mitotic spindle apparatus. Furthermore, injection of metaphase cells results in the collapse of the spindle apparatus into a monopolar microtubule array. These results identify for the first time a nontubulin component important for both the establishment and stabilization of the mitotic spindle apparatus in multicellular organisms. We suggest that nonmicrotubule structural components may be important for these processes.


2018 ◽  
Author(s):  
Jeffrey Reina ◽  
Lixin Zhou ◽  
Marcos R.M. Fontes ◽  
Nelly Panté ◽  
Nathalie Cella

AbstractMaspin (SERPINB5) is a potential tumor suppressor gene with pleiotropic biological activities, including regulation of cell proliferation, death, adhesion, migration and gene expression. Several studies suggest that subcellular localization plays an essential role on maspin tumor suppression activity. In this study we investigated the molecular mechanisms underlying maspin nucleocytoplasmic shuttling. Anin vitronuclear-import assay using digitonin-permeabilized HeLa cells demonstrated that maspin enters the nucleus by an energy-and carrier-independent mechanism. However, previous studies indicated that maspin subcellular localization is regulated in the cell. Using a nuclear localization signal (NLS) prediction software, we identified a putative NLS in the maspin amino acid sequence. To distinguish between passive and regulated nuclear translocation, maspinNLS or the full-length protein (MaspinFL) were fused to 5GFP, rendering the construct too large to enter the nucleus passively. Unexpectedly, 5GFP-maspinNLS, but not maspinFL-5GFP, entered the nucleus of HeLa cells. Dominant-negative Ran-GTPase mutants RanQ69L or RanT24N, suppressed 5GFP-maspinNLS nuclear localization. In summary, we provide evidence that maspin translocates to the nucleus passively. In addition, we identified a peptide in the maspin protein sequence, which is able to drive a 5GFP construct to the nucleus in an energy-dependent manner.


Author(s):  
Tomomi Kiyomitsu ◽  
Susan Boerner

The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.


1999 ◽  
Vol 145 (1) ◽  
pp. 29-43 ◽  
Author(s):  
Subhendra N. Mattagajasingh ◽  
Shu-Ching Huang ◽  
Julia S. Hartenstein ◽  
Michael Snyder ◽  
Vincent T. Marchesi ◽  
...  

Red blood cell protein 4.1 (4.1R) is an 80- kD erythrocyte phosphoprotein that stabilizes the spectrin/actin cytoskeleton. In nonerythroid cells, multiple 4.1R isoforms arise from a single gene by alternative splicing and predominantly code for a 135-kD isoform. This isoform contains a 209 amino acid extension at its NH2 terminus (head piece; HP). Immunoreactive epitopes specific for HP have been detected within the cell nucleus, nuclear matrix, centrosomes, and parts of the mitotic apparatus in dividing cells. Using a yeast two-hybrid system, in vitro binding assays, coimmunolocalization, and coimmunoprecipitation studies, we show that a 135-kD 4.1R isoform specifically interacts with the nuclear mitotic apparatus (NuMA) protein. NuMA and 4.1R partially colocalize in the interphase nucleus of MDCK cells and redistribute to the spindle poles early in mitosis. Protein 4.1R associates with NuMA in the interphase nucleus and forms a complex with spindle pole organizing proteins, NuMA, dynein, and dynactin during cell division. Overexpression of a 135-kD isoform of 4.1R alters the normal distribution of NuMA in the interphase nucleus. The minimal sequence sufficient for this interaction has been mapped to the amino acids encoded by exons 20 and 21 of 4.1R and residues 1788–1810 of NuMA. Our results not only suggest that 4.1R could, possibly, play an important role in organizing the nuclear architecture, mitotic spindle, and spindle poles, but also could define a novel role for its 22–24-kD domain.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81387 ◽  
Author(s):  
Rebecca A. Boisvert ◽  
Meghan A. Rego ◽  
Paul A. Azzinaro ◽  
Maurizio Mauro ◽  
Niall G. Howlett

1993 ◽  
Vol 106 (3) ◽  
pp. 967-981 ◽  
Author(s):  
E.C. Paul ◽  
A. Quaroni

The mAb RK7, previously shown to recognize keratin 19, was also found to cross-react with a biologically unrelated 102 kDa protein, which becomes associated with the poles of the mitotic apparatus. This newly identified protein, called cytocentrin, is a stable cellular component, may be at least in part phosphorylated, and displays a cell cycle-dependent cellular localization. In interphase cells, it is diffusely distributed in the cytosol and shows no affinity for cytoplasmic microtubules. It becomes localized to the centrosome in early prophase, prior to nuclear envelope breakdown, separation of replicated centrosomes, and nucleation of mitotic apparatus microtubules. During metaphase, cytocentrin is located predominately at the mitotic poles, often appearing as an aggregate of small globular sub-components; it also associates with some polar microtubules. In late anaphase/early telophase cytocentrin dissociates entirely from the mitotic apparatus and becomes temporarily localized with microtubules in the midbody, from which it disappears by late telophase. In taxol-treated cells cytocentrin was associated with the center of the miniasters but also showed affinity for some cytoplasmic microtubules. Studies employing G2-synchronized cells and nocodazole demonstrated that cytocentrin can become associated with mitotic centrosomes independently of tubulin polymerization and that microtubules regrow from antigen-containing foci. We interpret these results to suggest that cytocentrin is a cytoplasmic protein that becomes specifically activated or modified at the onset of mitosis so that it can affiliate with the mitotic poles where it may provide a link between the pericentriolar material and other components of the mitotic apparatus.


1975 ◽  
Vol 18 (2) ◽  
pp. 327-346
Author(s):  
F.O. Perkins

The fine structure of the haplosporidan mitotic apparatus is described from observations of plasmodial nuclei of Minchinia nelsoni, M. costalis, Minchinia sp., and Urosporidium crescens. The apparatus, which is the Kernstab of light-microscope studies, consists of a bundle of microtubules terminating in a spindle pole body (SPB) at each end of the bundle. A few microtubules extend from SPB to SPB, but most either extend from an SPB and terminate in the nucleoplasm or lie in the nucleoplasm, free of either SPB. The bundle lengthens during mitosis, increasing the SPB-to-SPB distance by a factor of 2 to 3 as compared to interphase nuclei. SPBs are not in contact with the nuclear envelope, being found always in the nucleoplasm which is delimited by the nuclear envelope throughout mitosis. The mitotic apparatus is persistent through interphase, at least in a form which is not significantly different from that found in mitotic nuclei.


Sign in / Sign up

Export Citation Format

Share Document