scholarly journals I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding.

1992 ◽  
Vol 3 (12) ◽  
pp. 1339-1352 ◽  
Author(s):  
P A Ganchi ◽  
S C Sun ◽  
W C Greene ◽  
D W Ballard

The active nuclear form of the NF-kappa B transcription factor complex is composed of two DNA binding subunits, NF-kappa B p65 and NF-kappa B p50, both of which share extensive N-terminal sequence homology with the v-rel oncogene product. The NF-kappa B p65 subunit provides the transactivation activity in this complex and serves as an intracellular receptor for a cytoplasmic inhibitor of NF-kappa B, termed I kappa B. In contrast, NF-kappa B p50 alone fails to stimulate kappa B-directed transcription, and based on prior in vitro studies, is not directly regulated by I kappa B. To investigate the molecular basis for the critical regulatory interaction between NF-kappa B and I kappa B/MAD-3, a series of human NF-kappa B p65 mutants was identified that functionally segregated DNA binding, I kappa B-mediated inhibition, and I kappa B-induced nuclear exclusion of this transcription factor. Results from in vivo expression studies performed with these NF-kappa B p65 mutants revealed the following: 1) I kappa B/MAD-3 completely inhibits NF-kappa B p65-dependent transcriptional activation mediated through the human immunodeficiency virus type 1 kappa B enhancer in human T lymphocytes, 2) the binding of I kappa B/MAD-3 to NF-kappa B p65 is sufficient to retarget NF-kappa B p65 from the nucleus to the cytoplasm, 3) selective deletion of the functional nuclear localization signal present in the Rel homology domain of NF-kappa B p65 disrupts its ability to engage I kappa B/MAD-3, and 4) the unique C-terminus of NF-kappa B p65 attenuates its own nuclear localization and contains sequences that are required for I kappa B-mediated inhibition of NF-kappa B p65 DNA binding activity. Together, these findings suggest that the nuclear localization signal and transactivation domain of NF-kappa B p65 constitute a bipartite system that is critically involved in the inhibitory function of I kappa B/MAD-3. Unexpectedly, our in vivo studies also demonstrate that I kappa B/MAD-3 binds directly to NF-kappa B p50. This interaction is functional as it leads to retargeting of NF-kappa B p50 from the nucleus to the cytoplasm. However, no loss of DNA binding activity is observed, presumably reflecting the unique C-terminal domain that is distinct from that present in NF-kappa B p65.

1996 ◽  
Vol 109 (10) ◽  
pp. 2443-2452 ◽  
Author(s):  
S. de la Luna ◽  
M.J. Burden ◽  
C.W. Lee ◽  
N.B. La Thangue

The cellular transcription factor E2F plays a critical role in integrating cell cycle progression with the transcription apparatus by virtue of a physical interaction and control by key regulators of the cell cycle, such as pRb, cyclins and cyclin-dependent kinases. Generic E2F DNA binding activity arises when a member of two families of proteins, E2F and DP, form heterodimeric complexes, an interaction which results in co-operative transcriptional and DNA binding activity. Here, we characterise a new and hitherto unexpected mechanism of control influencing the activity of E2F which is mediated at the level of intracellular location through a dependence on heterodimer formation for nuclear translocation. Nuclear accumulation is dramatically influenced by two distinct processes: alternative splicing of a nuclear localization signal and subunit composition of the E2F heterodimer. These data define a new level of control in the E2F transcription factor whereby interplay between subunits dictates the levels of nuclear DNA binding activity.


1995 ◽  
Vol 312 (3) ◽  
pp. 833-838 ◽  
Author(s):  
A F G Slater ◽  
M Kimland ◽  
S A Jiang ◽  
S Orrenius

Rat thymocytes spontaneously undergo apoptotic death in cell culture, and are also sensitive to the induction of apoptosis by various stimuli. We show that unstimulated thymocytes constitutively express a p50-containing nuclear factor kappa B (NF kappa B)/rel DNA-binding activity in their nuclei. When the cells were fractionated by density-gradient centrifugation this activity was found to be most pronounced in immature CD4+8+ thymocytes, the cell population that undergoes selection by apoptosis in vivo and that is most sensitive to external inducers of apoptosis in vitro. The intensity of the NF kappa B/rel protein-DNA complex was significantly enhanced 30 min after exposing thymocytes to methylprednisolone or etoposide, two agents well known to induce apoptosis in these cells. Expression of this DNA-binding activity therefore correlates with the subsequent occurrence of apoptosis. By analogy to other systems, it has been suggested that antioxidants such as pyrrolidine dithiocarbamate (PDTC) inhibit thymocyte apoptosis by preventing the activation of an NF kappa B/rel transcription factor. However, we have found that etoposide induces a very similar enhancement of the NF kappa B/rel DNA-binding activity in the presence or absence of PDTC, despite a pronounced inhibition of apoptotic DNA fragmentation in the former situation. Dithiocarbamates therefore do not exert their anti-apoptotic activity in thymocytes by inhibiting the activation of this transcription factor.


1986 ◽  
Vol 6 (12) ◽  
pp. 4723-4733
Author(s):  
L A Chodosh ◽  
R W Carthew ◽  
P A Sharp

A simple approach has been developed for the unambiguous identification and purification of sequence-specific DNA-binding proteins solely on the basis of their ability to bind selectively to their target sequences. Four independent methods were used to identify the promoter-specific RNA polymerase II transcription factor MLTF as a 46-kilodalton (kDa) polypeptide. First, a 46-kDa protein was specifically cross-linked by UV irradiation to a body-labeled DNA fragment containing the MLTF binding site. Second, MLTF sedimented through glycerol gradients at a rate corresponding to a protein of native molecular weight 45,000 to 50,000. Third, a 46-kDa protein was specifically retained on a biotin-streptavidin matrix only when the DNA fragment coupled to the matrix contained the MLTF binding site. Finally, proteins from the most highly purified fraction which were eluted and renatured from the 44- to 48-kDa region of a sodium dodecyl sulfate-polyacrylamide gel exhibited both binding and transcription-stimulatory activities. The DNA-binding activity was purified 100,000-fold by chromatography through three conventional columns plus a DNA affinity column. Purified MLTF was characterized with respect to the kinetic and thermodynamic properties of DNA binding. These parameters indicate a high degree of occupancy of MLTF binding sites in vivo.


2011 ◽  
Vol 10 (12) ◽  
pp. 1607-1617 ◽  
Author(s):  
Chien-Hsin Chu ◽  
Lung-Chun Chang ◽  
Hong-Ming Hsu ◽  
Shu-Yi Wei ◽  
Hsing-Wei Liu ◽  
...  

ABSTRACT Nuclear proteins usually contain specific peptide sequences, referred to as nuclear localization signals (NLSs), for nuclear import. These signals remain unexplored in the protozoan pathogen, Trichomonas vaginalis . The nuclear import of a Myb2 transcription factor was studied here using immunodetection of a hemagglutinin-tagged Myb2 overexpressed in the parasite. The tagged Myb2 was localized to the nucleus as punctate signals. With mutations of its polybasic sequences, 48KKQK51 and 61KR62, Myb2 was localized to the nucleus, but the signal was diffusive. When fused to a C-terminal non-nuclear protein, the Myb2 sequence spanning amino acid (aa) residues 48 to 143, which is embedded within the R2R3 DNA-binding domain (aa 40 to 156), was essential and sufficient for efficient nuclear import of a bacterial tetracycline repressor (TetR), and yet the transport efficiency was reduced with an additional fusion of a firefly luciferase to TetR, while classical NLSs from the simian virus 40 T-antigen had no function in this assay system. Myb2 nuclear import and DNA-binding activity were substantially perturbed with mutation of a conserved isoleucine (I74) in helix 2 to proline that altered secondary structure and ternary folding of the R2R3 domain. Disruption of DNA-binding activity alone by point mutation of a lysine residue, K51, preceding the structural domain had little effect on Myb2 nuclear localization, suggesting that nuclear translocation of Myb2, which requires an ordered structural domain, is independent of its DNA binding activity. These findings provide useful information for testing whether myriad Mybs in the parasite use a common module to regulate nuclear import.


1992 ◽  
Vol 12 (11) ◽  
pp. 4960-4969
Author(s):  
E Kutoh ◽  
P E Strömstedt ◽  
L Poellinger

The ubiquitous and constitutive octamer transcription factor OTF-1 (Oct 1) is the target of positive regulation by the potent herpes simplex virus trans-activator VP16, which forms a complex with the homeodomain of OTF-1. Here we present evidence that the glucocorticoid receptor can negatively regulate OTF-1 function by a mechanism that is independent of DNA binding. In vivo-expressed glucocorticoid receptor inhibited in a hormone-dependent manner activation of a minimal promoter construct carrying a functional octamer site. Moreover, expression of the receptor in vivo resulted in hormone-dependent repression of OTF-1-dependent DNA-binding activity in nuclear extract. In vitro, the DNA-binding activity of partially purified OTF-1 was repressed following incubation with purified glucocorticoid receptor. Cross-linking and immunoprecipitation experiments indicated that the functional interference may be due to a strong association between these two proteins in solution. Finally, preliminary evidence indicates that the homeo subdomain of OTF-1 that directs formation of a complex with VP16 may also be critical for interaction with the glucocorticoid receptor. Thus, OTF-1 is a target for both positive and negative regulation by protein-protein interaction. Moreover, the functional interference between OTF-1 and the glucocorticoid receptor represents a novel regulatory mechanism in the cross-coupling of signal transduction pathways of nuclear receptors and constitutive transcription factors.


1993 ◽  
Vol 13 (10) ◽  
pp. 6089-6101 ◽  
Author(s):  
R I Scheinman ◽  
A A Beg ◽  
A S Baldwin

NF-kappa B is an important transcription factor regulating expression of genes involved in immune function, inflammation, and cellular growth control. NF-kappa B activity is induced by numerous stimuli, such as phorbol esters, B- and T-cell mitogens, the cytokines tumor necrosis factor and interleukin-1, and serum growth factors. The standard model for the induction of NF-kappa B activity involves the release of the transcription factor from a cytoplasmic inhibitor termed I kappa B, allowing translocation of NF-kappa B to the nucleus. I kappa B contains multiple copies of the so-called ankyrin repeat, which are apparently necessary for its function. Subunits comprising NF-kappa B and related binding activities are members of the Rel multigene family. Two such subunits, p50 and p52 (also called p50B), are proteolytically processed from precursors of 105 kDa (also called p105 and NFKB1) and 100 kDa (also called p100, NFKB2, and Lyt-10), respectively. Both contain N-terminal Rel-homologous domains as well as multiple copies of C-terminal ankyrin repeats. We show here that NF-kappa B p100 is a component of the previously identified DNA-binding activity H2TF1. In addition, we show that p100 is localized in the cytoplasm in HeLa cells, where it is associated with c-Rel, p50, or p65 (RelA). In transient-transfection assays, p100 represses the ability of NF-kappa B p65 to activate a kappa B-containing reporter construct. Transfection of p100 also results in a loss of nuclear p65 DNA binding to a kappa B probe, as measured by an electrophoretic mobility shift assay, and a loss of nuclear p65 immunoreactivity, as measured by immunoblotting. This loss of nuclear p65 is paralleled by a gain of p65 DNA-binding activity and immunoreactivity in the cytoplasm. We interpret these data as demonstrating that p100 functions as an I kappa B-like molecule to sequester Rel family members in the cytoplasm. Proteolytic processing of p100 to the activator p52 is predicted to generate several new forms of Rel family heterodimers and therefore represents a form of regulation of NF-kappa B activity distinct from the classic I kappa B pathway.


1996 ◽  
Vol 16 (10) ◽  
pp. 5444-5449 ◽  
Author(s):  
H Suyang ◽  
R Phillips ◽  
I Douglas ◽  
S Ghosh

Stimulation with inducers that cause persistent activation of NF-kappa B results in the degradation of the NF-kappa B inhibitors, I kappa B alpha and I kappa B beta. Despite the rapid resynthesis and accumulation of I kappa B alpha, NF-kappa B remains induced under these conditions. We now report that I kappa B beta is also resynthesized in stimulated cells and appears as an unphosphorylated protein. The unphosphorylated I kappa B beta forms a stable complex with NF-kappa B in the cytosol; however, this binding fails to mask the nuclear localization signal and DNA binding domain on NF-kappa B, and the I kappa B beta-NF-kappa B complex enters the nucleus. It appears therefore that during prolonged stimulation, I kappa B beta functions as a chaperone for NF-kappa B by protecting it from I kappa B alpha and allowing it to be transported to the nucleus.


1995 ◽  
Vol 15 (6) ◽  
pp. 3082-3089 ◽  
Author(s):  
E M Hijmans ◽  
P M Voorhoeve ◽  
R L Beijersbergen ◽  
L J van 't Veer ◽  
R Bernards

E2F DNA binding sites are found in a number of genes whose expression is tightly regulated during the cell cycle. The activity of E2F transcription factors is regulated by association with specific repressor molecules that can bind and inhibit the E2F transactivation domain. For E2F-1, E2F-2, and E2F-3, the repressor is the product of the retinoblastoma gene, pRb. E2f-4 interacts with pRb-related p107 and not with pRb itself. Recently, a cDNA encoding a third member of the retinoblastoma gene family, p130, was isolated. p130 also interacts with E2F DNA binding activity, primarily in the G0 phase of the cell cycle. We report here the cloning of a fifth member of the E2F gene family. The human E2F-5 cDNA encodes a 346-amino-acid protein with a predicted molecular mass of 38 kDa. E2F-5 is more closely related to E2F-4 (78% similarity) than to E2F-1 (57% similarity). E2F-5 resembles the other E2Fs in that it binds to a consensus E2F site in a cooperative fashion with DP-1. By using a specific E2F-5 antiserum, we found that under physiological conditions, E2F-5 interacts preferentially with p130.


Sign in / Sign up

Export Citation Format

Share Document