general protein
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 37)

H-INDEX

37
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Shuo Wang ◽  
Lukas Findeisen ◽  
Sebastian Leptihn ◽  
Mark Wallace ◽  
Marcel Hörning ◽  
...  

Abstract Single-molecule studies can reveal phenomena that remain hidden in ensemble measurements. Here, we show the correlation between lateral protein diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC) in membranes resting on ultrathin hydrogel films. Using electrode-free optical recordings of ion flux, we find that TOM-CC switches reversibly between three states of ion permeability associated with protein diffusion. Freely diffusing TOM-CC molecules are observed in a high permeability state, while non-moving molecules are in an intermediate and a low permeability state. We explain this behavior by the mechanical binding of the two protruding Tom22 subunits to the hydrogel and a concomitant combinatorial opening and closing of the two β-barrel pores of TOM-CC. TOM-CC could thus be the first β-barrel protein channel to exhibit membrane state-dependent mechanosensitive properties.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1795
Author(s):  
Markus B. Tomek ◽  
Bettina Janesch ◽  
Matthias L. Braun ◽  
Manfred Taschner ◽  
Rudolf Figl ◽  
...  

Diverse members of the Bacteroidetes phylum have general protein O-glycosylation systems that are essential for processes such as host colonization and pathogenesis. Here, we analyzed the function of a putative fucosyltransferase (FucT) family that is widely encoded in Bacteroidetes protein O-glycosylation genetic loci. We studied the FucT orthologs of three Bacteroidetes species—Tannerella forsythia, Bacteroides fragilis, and Pedobacter heparinus. To identify the linkage created by the FucT of B. fragilis, we elucidated the full structure of its nine-sugar O-glycan and found that l-fucose is linked β1,4 to glucose. Of the two fucose residues in the T. forsythia O-glycan, the fucose linked to the reducing-end galactose was shown by mutational analysis to be l-fucose. Despite the transfer of l-fucose to distinct hexose sugars in the B. fragilis and T. forsythia O-glycans, the FucT orthologs from B. fragilis, T. forsythia, and P. heparinus each cross-complement the B. fragilis ΔBF4306 and T. forsythia ΔTanf_01305 FucT mutants. In vitro enzymatic analyses showed relaxed acceptor specificity of the three enzymes, transferring l-fucose to various pNP-α-hexoses. Further, glycan structural analysis together with fucosidase assays indicated that the T. forsythia FucT links l-fucose α1,6 to galactose. Given the biological importance of fucosylated carbohydrates, these FucTs are promising candidates for synthetic glycobiology.


2021 ◽  
Author(s):  
Shuo Wang ◽  
Lukas Findeisen ◽  
Sebastian Leptihn ◽  
Mark I Wallace ◽  
Marcel Hörning ◽  
...  

The role of lateral diffusion of proteins in the membrane in the context of function has not been examined extensively. Here, we explore the relationship between protein lateral diffusion and channel activity of the general protein import pore of mitochondria (TOM-CC). Optical ion flux sensing through single TOM-CC molecules shows that TOM-CC can occupy three ion permeability states. Whereas freely diffusing TOM-CC molecules are preferentially found in a high permeability state, physical tethering to an agarose support causes the channels to transition to intermediate and low permeability states. This data shows that combinatorial opening and closing of the two pores of TOM-CC correlates with lateral protein diffusion in the membrane plane, and that the complex has mechanosensitive-like properties. This is the first demonstration of β-barrel protein mechanosensitivity, and has direct conceptual consequences for the understanding of the process of mitochondrial protein import. Our approach provides a novel tool to simultaneously study the interplay of membrane protein diffusion and channel dynamics.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pedro Farias ◽  
Romeu Francisco ◽  
Lorrie Maccario ◽  
Jakob Herschend ◽  
Ana Paula Piedade ◽  
...  

Tellurium (Te) is a metalloid with scarce and scattered abundance but with an increased interest in human activity for its uses in emerging technologies. As is seen for other metals and metalloids, the result of mining activity and improper disposal of high-tech devices will lead to niches with increased abundance of Te. This metalloid will be more available to bacteria and represent an increasing selective pressure. This environmental problem may constitute an opportunity to search for microorganisms with genetic and molecular mechanisms of microbial resistance to Te toxic anions. Organisms from Te-contaminated niches could provide tools for Te remediation and fabrication of Te-containing structures with added value. The objective of this study was to determine the ability of a high metal-resistant Paenibacillus pabuli strain ALJ109b, isolated from high metal content mining residues, to reduce tellurite ion, and to evaluate the formation of metallic tellurium by cellular reduction, isolate the protein responsible, and determine the metabolic response to tellurite during growth. P. pabuli ALJ109b demonstrated to be resistant to Te (IV) at concentrations higher than reported for its genus. It can efficiently remove soluble Te (IV) from solution, over 20% in 8 h of growth, and reduce it to elemental Te, forming monodisperse nanostructures, verified by scattering electron microscopy. Cultivation of P. pabuli ALJ109b in the presence of Te (IV) affected the general protein expression pattern, and hence the metabolism, as demonstrated by high-throughput proteomic analysis. The Te (IV)-induced metabolic shift is characterized by an activation of ROS response. Flagellin from P. pabuli ALJ109b demonstrates high Te (0) forming activity in neutral to basic conditions in a range of temperatures from 20°C to 37°C. In conclusion, the first metabolic characterization of a strain of P. pabuli response to Te (IV) reveals a highly resistant strain with a unique Te (IV) proteomic response. This strain, and its flagellin, display, all the features of potential tools for Te nanoparticle production.


2021 ◽  
Vol 12 ◽  
Author(s):  
Inna A. Suvorova ◽  
Mikhail S. Gelfand

The IclR-family is a large group of transcription factors (TFs) regulating various biological processes in diverse bacteria. Using comparative genomics techniques, we have identified binding motifs of IclR-family TFs, reconstructed regulons and analyzed their content, finding co-occurrences between the regulated COGs (clusters of orthologous genes), useful for future functional characterizations of TFs and their regulated genes. We describe two main types of IclR-family motifs, similar in sequence but different in the arrangement of the half-sites (boxes), with GKTYCRYW3–4RYGRAMC and TGRAACAN1–2TGTTYCA consensuses, and also predict that TFs in 32 orthologous groups have binding sites comprised of three boxes with alternating direction, which implies two possible alternative modes of dimerization of TFs. We identified trends in site positioning relative to the translational gene start, and show that TFs in 94 orthologous groups bind tandem sites with 18–22 nucleotides between their centers. We predict protein–DNA contacts via the correlation analysis of nucleotides in binding sites and amino acids of the DNA-binding domain of TFs, and show that the majority of interacting positions and predicted contacts are similar for both types of motifs and conform well both to available experimental data and to general protein–DNA interaction trends.


2021 ◽  
Author(s):  
Jeffrey A Ruffolo ◽  
Jeremias Sulam ◽  
Jeffrey J. Gray

Therapeutic antibodies make up a rapidly growing segment of the biologics market. However, rational design of antibodies is hindered by reliance on experimental methods for determining antibody structures. In recent years, deep learning methods have driven significant advances in general protein structure prediction. Here, we present DeepAb, a deep learning method for predicting accurate antibody FV structures from sequence. We evaluate DeepAb on two benchmark sets - one balanced for structural diversity and the other composed of clinical-stage therapeutic antibodies - and find that our method consistently outperforms the leading alternatives. Previous deep learning methods have operated as “black boxes” and offered few insights into their predictions. By introducing a directly interpretable attention mechanism, we show that our network attends to physically important residue pairs. For example, in prediction of one CDR H3 residue conformation, the network attends to proximal aromatics and a key hydrogen bonding interaction that constrain the loop conformation. Finally, we present a novel mutant scoring metric derived from network confidence and show that for a particular antibody, all ten of the top-ranked mutations improve binding affinity. These results suggest that this model will be useful for a broad range of antibody prediction and design tasks.


2021 ◽  
Vol 55 (1 (254)) ◽  
pp. 16-24
Author(s):  
Ernestina Kh. Barseghyan ◽  
Hasmik M. Karapetyan ◽  
Armen H. Trchounian

Vibration pathology is in the second place among diseases connected to the profession. The vibration effect both on the protein fraction shifts and on the activities of I type arginase (Arg) IA and IB from white rat liver has been studied in the conditions of 5-, 10- and 15-day vibration state. In the initial state of vibration some decrease of Arg IA and Arg IB activities was revealed as compared to the control without general protein spectrum change of liver extract. Along with vibration effect, the expression level of Arg IA was increased with duration enhancement, which possibly is due to hyperammonemia, in the result of which ureagenesis is stimulated. Stimulation of easy available adaptation reserves were described due to protein catabolism. Analysis of shifts of general and enzyme protein fractions in the conditions of vibration effect allows to reveal their qualitative and quantitative changes and to make important the organism adaptation reactions that result from anabolic and catabolic process relations. It is possible that the revealed changes in the activity of arginase IA and IB are a biologically expedient mechanism for regulating the activity of hepatic arginase during vibration stress.


2021 ◽  
Author(s):  
Oliver Thorn-Seshold ◽  
Joyce Meiring

Microtubule dynamics can be inhibited with sub-second temporal resolution and cellular-scale spatial resolution, by using precise illuminations to optically pattern where and when photoswitchable microtubule-inhibiting chemical reagents exert their latent bioactivity. The recently-available reagents (SBTub, PST, STEpo, AzTax, PHTub) now enable researchers to use light to reversibly modulate microtubule-dependent processes in eukaryotes, in 2D and 3D cell culture as well as in vivo, across a variety of model organisms: with applications in fields from cargo transport to cell migration, cell division, and embryonic development.<br><br>However, a wide knowledge gap has remained in the literature, which has blocked further translation of these and many other classes of photopharmaceuticals. No generally-applicable procedures or workflows to establish biological assays using photopharmaceuticals have been published. Accordingly, the rate of adoption of photopharmaceutical tools in the broader chemical biology community (beyond the original chemical developers of the tools) has remained very low. Vital information about assay benchmarking for photoconversion, testing for isomer solubility, proving the retention of mechanism of action, estimating the limits of phototoxicity etc has either simply not been formalised in the literature, or has remained buried in diverse reports without being unified and codified for an audience beyond that of synthetic organic chemists.<br><br>Here we have developed a robust four-step assay establishment procedure to optimise assay parameters for achieving reliable photocontrol over microtubule dynamics, that is applicable to diverse families of photoswitchable inhibitors. This procedure also controls for these common sources of irreproducibility and includes numerous troubleshooting steps. We also collect together the relevant information for non-chemist "users" such as microscopists and biologists, to introduce the theory of small molecule photoswitching; the unique features, usage requirements, and limitations that photoswitchable chemical reagents have; and the specific performance features of the major classes of photoswitchable microtubule inhibitors that are currently available; to highlight their properties that suit them to different applications. The generally-applicable workflows that we present allow establishing cellular assays optically controlling microtubule dynamics in a temporally reversible fashion with spatial specificity down to a single selected cell within a field of view. These workflows and methods also equip the reader to tackle advanced uses of photoswitchable chemical reagents for general protein targets, in 3D culture and in vivo, and can represent an important bridge to reach the high-value biological applications that photopharmacology can promise.<br>


2021 ◽  
Author(s):  
Oliver Thorn-Seshold ◽  
Joyce Meiring

Microtubule dynamics can be inhibited with sub-second temporal resolution and cellular-scale spatial resolution, by using precise illuminations to optically pattern where and when photoswitchable microtubule-inhibiting chemical reagents exert their latent bioactivity. The recently-available reagents (SBTub, PST, STEpo, AzTax, PHTub) now enable researchers to use light to reversibly modulate microtubule-dependent processes in eukaryotes, in 2D and 3D cell culture as well as in vivo, across a variety of model organisms: with applications in fields from cargo transport to cell migration, cell division, and embryonic development.<br><br>However, a wide knowledge gap has remained in the literature, which has blocked further translation of these and many other classes of photopharmaceuticals. No generally-applicable procedures or workflows to establish biological assays using photopharmaceuticals have been published. Accordingly, the rate of adoption of photopharmaceutical tools in the broader chemical biology community (beyond the original chemical developers of the tools) has remained very low. Vital information about assay benchmarking for photoconversion, testing for isomer solubility, proving the retention of mechanism of action, estimating the limits of phototoxicity etc has either simply not been formalised in the literature, or has remained buried in diverse reports without being unified and codified for an audience beyond that of synthetic organic chemists.<br><br>Here we have developed a robust four-step assay establishment procedure to optimise assay parameters for achieving reliable photocontrol over microtubule dynamics, that is applicable to diverse families of photoswitchable inhibitors. This procedure also controls for these common sources of irreproducibility and includes numerous troubleshooting steps. We also collect together the relevant information for non-chemist "users" such as microscopists and biologists, to introduce the theory of small molecule photoswitching; the unique features, usage requirements, and limitations that photoswitchable chemical reagents have; and the specific performance features of the major classes of photoswitchable microtubule inhibitors that are currently available; to highlight their properties that suit them to different applications. The generally-applicable workflows that we present allow establishing cellular assays optically controlling microtubule dynamics in a temporally reversible fashion with spatial specificity down to a single selected cell within a field of view. These workflows and methods also equip the reader to tackle advanced uses of photoswitchable chemical reagents for general protein targets, in 3D culture and in vivo, and can represent an important bridge to reach the high-value biological applications that photopharmacology can promise.<br>


Sign in / Sign up

Export Citation Format

Share Document