scholarly journals The Chlamydomonas IDA7 Locus Encodes a 140-kDa Dynein Intermediate Chain Required to Assemble the I1 Inner Arm Complex

1998 ◽  
Vol 9 (12) ◽  
pp. 3351-3365 ◽  
Author(s):  
Catherine A. Perrone ◽  
Pinfen Yang ◽  
Eileen O’Toole ◽  
Winfield S. Sale ◽  
Mary E. Porter

To identify new loci that are involved in the assembly and targeting of dynein complexes, we have screened a collection of motility mutants that were generated by insertional mutagenesis. One such mutant, 5B10, lacks the inner arm isoform known as the I1 complex. This isoform is located proximal to the first radial spoke in each 96-nm axoneme repeat and is an important target for the regulation of flagellar motility. Complementation tests reveal that 5B10 represents a new I1 locus, IDA7. Biochemical analyses confirm thatida7 axonemes lack at least five I1 complex subunits. Southern blots probed with a clone containing the gene encoding the 140-kDa intermediate chain (IC) indicate that theida7 mutation is the result of plasmid insertion into the IC140 gene. Transformation with a wild-type copy of the IC140 gene completely rescues the mutant defects. Surprisingly, transformation with a construct of the IC140 gene lacking the first four exons of the coding sequence also rescues the mutant phenotype. These studies indicate that IC140 is essential for assembly of the I1 complex, but unlike other dynein ICs, the N-terminal region is not critical for its activity.

2009 ◽  
Vol 20 (13) ◽  
pp. 3055-3063 ◽  
Author(s):  
Raqual Bower ◽  
Kristyn VanderWaal ◽  
Eileen O'Toole ◽  
Laura Fox ◽  
Catherine Perrone ◽  
...  

To understand the mechanisms that regulate the assembly and activity of flagellar dyneins, we focused on the I1 inner arm dynein (dynein f) and a null allele, bop5-2, defective in the gene encoding the IC138 phosphoprotein subunit. I1 dynein assembles in bop5-2 axonemes but lacks at least four subunits: IC138, IC97, LC7b, and flagellar-associated protein (FAP) 120—defining a new I1 subcomplex. Electron microscopy and image averaging revealed a defect at the base of the I1 dynein, in between radial spoke 1 and the outer dynein arms. Microtubule sliding velocities also are reduced. Transformation with wild-type IC138 restores assembly of the IC138 subcomplex and rescues microtubule sliding. These observations suggest that the IC138 subcomplex is required to coordinate I1 motor activity. To further test this hypothesis, we analyzed microtubule sliding in radial spoke and double mutant strains. The results reveal an essential role for the IC138 subcomplex in the regulation of I1 activity by the radial spoke/phosphorylation pathway.


1997 ◽  
Vol 136 (1) ◽  
pp. 167-176 ◽  
Author(s):  
Geoffrey Habermacher ◽  
Winfield S. Sale

One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.


1996 ◽  
Vol 132 (3) ◽  
pp. 359-370 ◽  
Author(s):  
E F Smith ◽  
P A Lefebvre

Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.


2020 ◽  
Vol 117 (46) ◽  
pp. 29046-29054 ◽  
Author(s):  
Nicolas L. Fernandez ◽  
Brian Y. Hsueh ◽  
Nguyen T. Q. Nhu ◽  
Joshua L. Franklin ◽  
Yann S. Dufour ◽  
...  

The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogenVibrio choleraetypically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions inV. choleraeand the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape inV. choleraeis regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression ofcrvA, a gene encoding an intermediate filament-like protein necessary for curvature formation inV. cholerae.This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated withV. cholerae’s induction of sessility. During microcolony formation, wild-typeV. choleraecells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straightV. choleraemutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.


2004 ◽  
Vol 3 (4) ◽  
pp. 870-879 ◽  
Author(s):  
Erin E. Dymek ◽  
Paul A. Lefebvre ◽  
Elizabeth F. Smith

ABSTRACT Numerous studies have indicated that the central apparatus plays a significant role in regulating flagellar motility, yet little is known about how the central pair of microtubules or their associated projections assemble. Several Chlamydomonas mutants are defective in central apparatus assembly. For example, mutant pf15 cells have paralyzed flagella that completely lack the central pair of microtubules. We have cloned the wild-type PF15 gene and confirmed its identity by rescuing the motility and ultrastructural defects in two pf15 alleles, the original pf15a mutant and a mutant generated by insertional mutagenesis. Database searches using the 798-amino-acid polypeptide predicted from the complete coding sequence indicate that the PF15 gene encodes the Chlamydomonas homologue of the katanin p80 subunit. Katanin was originally identified as a heterodimeric protein with a microtubule-severing activity. These results reveal a novel role for the katanin p80 subunit in the assembly and/or stability of the central pair of flagellar microtubules.


2020 ◽  
Author(s):  
Nicolas L. Fernandez ◽  
Nguyen T. Q. Nhu ◽  
Brian Y. Hsueh ◽  
Joshua L. Franklin ◽  
Yann S. Dufour ◽  
...  

AbstractThe cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. While V. cholerae grows into a curved shape under most conditions, straight rods have been observed. However, the signals and regulatory pathways controlling cell shape transitions in V. cholerae and the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape in V. cholerae is regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by repressing expression of crvA, a gene encoding an intermediate filament-like protein necessary for curvature formation in V. cholerae. This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated with V. cholerae’s induction of sessility. Wild-type V. cholerae cells adhering to a surface lose their characteristic curved shape to become as straight as cells lacking crvA while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straight V. cholerae mutants have reduced speed when swimming using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic or biofilm lifestyles.


1999 ◽  
Vol 147 (6) ◽  
pp. 1261-1274 ◽  
Author(s):  
Shuo Ma ◽  
Leda Triviños-Lagos ◽  
Ralph Gräf ◽  
Rex L. Chisholm

Cytoplasmic dynein intermediate chain (IC) mediates dynein–dynactin interaction in vitro (Karki, S., and E.L. Holzbaur. 1995. J. Biol. Chem. 270:28806–28811; Vaughan, K.T., and R.B. Vallee. 1995. J. Cell Biol. 131:1507–1516). To investigate the physiological role of IC and dynein–dynactin interaction, we expressed IC truncations in wild-type Dictyostelium cells. ICΔC associated with dynactin but not with dynein heavy chain, whereas ICΔN truncations bound to dynein but bound dynactin poorly. Both mutations resulted in abnormal localization to the Golgi complex, confirming dynein function was disrupted. Striking disorganization of interphase microtubule (MT) networks was observed when mutant expression was induced. In a majority of cells, the MT networks collapsed into large bundles. We also observed cells with multiple cytoplasmic asters and MTs lacking an organizing center. These cells accumulated abnormal DNA content, suggesting a defect in mitosis. Striking defects in centrosome morphology were also observed in IC mutants, mostly larger than normal centrosomes. Ultrastructural analysis of centrosomes in IC mutants showed interphase accumulation of large centrosomes typical of prophase as well as unusually paired centrosomes, suggesting defects in centrosome replication and separation. These results suggest that dynactin-mediated cytoplasmic dynein function is required for the proper organization of interphase MT network as well as centrosome replication and separation in Dictyostelium.


2007 ◽  
Vol 176 (4) ◽  
pp. 473-482 ◽  
Author(s):  
Karl-Ferdinand Lechtreck ◽  
George B. Witman

Mutations in Hydin cause hydrocephalus in mice, and HYDIN is a strong candidate for causing hydrocephalus in humans. The gene is conserved in ciliated species, including Chlamydomonas reinhardtii. An antibody raised against C. reinhardtii hydin was specific for an ∼540-kD flagellar protein that is missing from axonemes of strains that lack the central pair (CP). The antibody specifically decorated the C2 microtubule of the CP apparatus. An 80% knock down of hydin resulted in short flagella lacking the C2b projection of the C2 microtubule; the flagella were arrested at the switch points between the effective and recovery strokes. Biochemical analyses revealed that hydin interacts with the CP proteins CPC1 and kinesin-like protein 1 (KLP1). In conclusion, C. reinhardtii hydin is a CP protein required for flagellar motility and probably involved in the CP–radial spoke control pathway that regulates dynein arm activity. Hydrocephalus caused by mutations in hydin likely involves the malfunctioning of cilia because of a defect in the CP.


2002 ◽  
Vol 70 (8) ◽  
pp. 4523-4533 ◽  
Author(s):  
Melanie M. Pearson ◽  
Eric R. Lafontaine ◽  
Nikki J. Wagner ◽  
Joseph W. St. Geme ◽  
Eric J. Hansen

ABSTRACT Previous studies correlated the presence of a 200-kDa protein on the surface of Moraxella catarrhalis with the ability of this organism to agglutinate human erythrocytes (M. Fitzgerald, R. Mulcahy, S. Murphy, C. Keane, D. Coakley, and T. Scott, FEMS Immunol. Med. Microbiol. 18:209-216, 1997). In the present study, the gene encoding the 200-kDa protein (designated Hag) of M. catarrhalis strain O35E was subjected to nucleotide sequence analysis and then was inactivated by insertional mutagenesis. The isogenic hag mutant was unable to agglutinate human erythrocytes and lost its ability to autoagglutinate but was still attached at wild-type levels to several human epithelial cell lines. The hag mutation also eliminated the ability of this mutant strain to bind human immunoglobulin D. The presence of the Hag protein on the M. catarrhalis cell surface, as well as that of the UspA1 and UspA2 proteins (C. Aebi, I. Maciver, J. L. Latimer, L. D. Cope, M. K. Stevens, S. E. Thomas, G. H. McCracken, Jr., and E. J. Hansen, Infect. Immun. 65:4367-4377, 1997), was investigated by transmission electron and cryoimmunoelectron microscopy. Wild-type M. catarrhalis strain O35E possessed a dense layer of surface projections, whereas an isogenic uspA1 uspA2 hag triple mutant version of this strain did not possess any detectable surface projections. Examination of a uspA1 uspA2 double mutant that expressed the Hag protein revealed the presence of a relatively sparse layer of surface projections, similar to those seen on a uspA2 hag mutant that expressed UspA1. In contrast, a uspA1 hag mutant that expressed UspA2 formed a very dense layer of relatively short surface projections. These results indicate that the surface-exposed Hag protein and UspA1 and UspA2 have the potential to interact both with each other and directly with host defense systems.


1999 ◽  
Vol 144 (2) ◽  
pp. 293-304 ◽  
Author(s):  
David R. Mitchell ◽  
Winfield S. Sale

Two alleles at a new locus, central pair–associated complex 1 (CPC1), were selected in a screen for Chlamydomonas flagellar motility mutations. These mutations disrupt structures associated with central pair microtubules and reduce flagellar beat frequency, but do not prevent changes in flagellar activity associated with either photophobic responses or phototactic accumulation of live cells. Comparison of cpc1 and pf6 axonemes shows that cpc1 affects a row of projections along C1 microtubules distinct from those missing in pf6, and a row of thin fibers that form an arc between the two central pair microtubules. Electron microscopic images of the central pair in axonemes from radial spoke–defective strains reveal previously undescribed central pair structures, including projections extending laterally toward radial spoke heads, and a diagonal link between the C2 microtubule and the cpc1 projection. By SDS-PAGE, cpc1 axonemes show reductions of 350-, 265-, and 79-kD proteins. When extracted from wild-type axonemes, these three proteins cosediment on sucrose gradients with three other central pair proteins (135, 125, and 56 kD) in a 16S complex. Characterization of cpc1 provides new insights into the structure and biochemistry of the central pair apparatus, and into its function as a regulator of dynein-based motility.


Sign in / Sign up

Export Citation Format

Share Document