scholarly journals Oligomerization of a Cargo Receptor Directs Protein Sorting into COPII-coated Transport Vesicles

2003 ◽  
Vol 14 (7) ◽  
pp. 3055-3063 ◽  
Author(s):  
Ken Sato ◽  
Akihiko Nakano

Secretory proteins are transported from the endoplasmic reticulum (ER) to the Golgi complex in vesicles coated with coat protein complex II (COPII). The incorporation of certain transport molecules (cargo) into the COPII vesicles is thought to be mediated by cargo receptors. Here we show that Emp47p, a type-I membrane protein, is specifically required for the transport of an integral membrane protein, Emp46p, from the ER. Exit of Emp46p from the ER was saturable and dependent on the expression level of Emp47p. Emp46p binding to Emp47p occurs in the ER through the coiled-coil region in the luminal domains of both Emp47p and Emp46p, and dissociation occurs in the Golgi. Further, this coiled-coil region is also required for Emp47p to form an oligomeric complex of itself in the ER, which is essential for exit of Emp47p from the ER. Our results suggest that Emp47p is a receptor protein for Emp46p that allows for the selective transport of this protein, and this event involves receptor oligomerization.

2006 ◽  
Vol 17 (11) ◽  
pp. 4780-4789 ◽  
Author(s):  
Catherine A. Bue ◽  
Christine M. Bentivoglio ◽  
Charles Barlowe

Secretory proteins are exported from the endoplasmic reticulum (ER) in transport vesicles formed by the coat protein complex II (COPII). We detected Erv26p as an integral membrane protein that was efficiently packaged into COPII vesicles and cycled between the ER and Golgi compartments. The erv26Δ mutant displayed a selective secretory defect in which the pro-form of vacuolar alkaline phosphatase (pro-ALP) accumulated in the ER, whereas other secretory proteins were transported at wild-type rates. In vitro budding experiments demonstrated that Erv26p was directly required for packaging of pro-ALP into COPII vesicles. Moreover, Erv26p was detected in a specific complex with pro-ALP when immunoprecipitated from detergent-solublized ER membranes. Based on these observations, we propose that Erv26p serves as a transmembrane adaptor to link specific secretory cargo to the COPII coat. Because ALP is a type II integral membrane protein in yeast, these findings imply that an additional class of secretory cargo relies on adaptor proteins for efficient export from the ER.


1993 ◽  
Vol 120 (4) ◽  
pp. 877-883 ◽  
Author(s):  
N Liu ◽  
D T Brown

The E2 glycoprotein of the alphavirus Sindbis is a typical type I membrane protein with a single membrane spanning domain and a cytoplasmic tail (endo domain) containing 33 amino acids. The carboxyl terminal domain of the tail has been implicated as (a) attachment site for nucleocapsid protein, and (b) signal sequence for integration of the other alpha-virus membrane proteins 6K and E1. These two functions require that the carboxyl terminus be exposed in the cell cytoplasm (a) and exposed in the lumen of the endoplasmic reticulum (b). We have investigated the orientation of this glycoprotein domain with respect to cell membranes by substituting a tyrosine for the normally occurring serine, four amino acids upstream of the carboxyl terminus. Using radioiodination of this tyrosine as an indication of the exposure of the glycoprotein tail, we have provided evidence that this domain is initially translocated into a membrane and is returned to the cytoplasm after export from the ER. This is the first demonstration of such a transient translocation of a single domain of an integral membrane protein and this rearrangement explains some important aspects of alphavirus assembly.


2002 ◽  
Vol 13 (3) ◽  
pp. 880-891 ◽  
Author(s):  
Jacqueline Powers ◽  
Charles Barlowe

Erv14p is a conserved integral membrane protein that traffics in COPII-coated vesicles and localizes to the early secretory pathway in yeast. Deletion of ERV14 causes a defect in polarized growth because Axl2p, a transmembrane secretory protein, accumulates in the endoplasmic reticulum and is not delivered to its site of function on the cell surface. Herein, we show that Erv14p is required for selection of Axl2p into COPII vesicles and for efficient formation of these vesicles. Erv14p binds to subunits of the COPII coat and binding depends on conserved residues in a cytoplasmically exposed loop domain of Erv14p. When mutations are introduced into this loop, an Erv14p-Axl2p complex accumulates in the endoplasmic reticulum, suggesting that Erv14p links Axl2p to the COPII coat. Based on these results and further genetic experiments, we propose Erv14p coordinates COPII vesicle formation with incorporation of specific secretory cargo.


1996 ◽  
Vol 135 (3) ◽  
pp. 585-595 ◽  
Author(s):  
M J Kuehn ◽  
R Schekman ◽  
P O Ljungdahl

In S. cerevisiae lacking SHR3, amino acid permeases specifically accumulate in membranes of the endoplasmic reticulum (ER) and fail to be transported to the plasma membrane. We examined the requirements of transport of the permeases from the ER to the Golgi in vitro. Addition of soluble COPII components (Sec23/24p, Sec13/31p, and Sar1p) to yeast membrane preparations generated vesicles containing the general amino acid permease. Gap1p, and the histidine permease, Hip1p. Shr3p was required for the packaging of Gap1p and Hip1p but was not itself incorporated into transport vesicles. In contrast, the packaging of the plasma membrane ATPase, Pma1p, and the soluble yeast pheromone precursor, glycosylated pro alpha factor, was independent of Shr3p. In addition, we show that integral membrane and soluble cargo colocalize in transport vesicles, indicating that different types of cargo are not segregated at an early step in secretion. Our data suggest that specific ancillary proteins in the ER membrane recruit subsets of integral membrane protein cargo into COPII transport vesicles.


2003 ◽  
Vol 14 (9) ◽  
pp. 3753-3766 ◽  
Author(s):  
Claudio G. Giraudo ◽  
Hugo J.F. Maccioni

Membrane proteins exit the endoplasmic reticulum (ER) in COPII-transport vesicles. ER export is a selective process in which transport signals present in the cytoplasmic tail (CT) of cargo membrane proteins must be recognized by coatomer proteins for incorporation in COPII vesicles. Two classes of ER export signals have been described for type I membrane proteins, the diacidic and the dihydrophobic motifs. Both motifs participate in the Sar1-dependent binding of Sec23p–Sec24p complex to the CTs during early steps of cargo selection. However, information concerning the amino acids in the CTs that interact with Sar1 is lacking. Herein, we describe a third class of ER export motif, [RK](X)[RK], at the CT of Golgi resident glycosyltransferases that is required for these type II membrane proteins to exit the ER. The dibasic motif is located proximal to the transmembrane border, and experiments of cross-linking in microsomal membranes and of binding to immobilized peptides showed that it directly interacts with the COPII component Sar1. Sar1GTP-bound to immobilized peptides binds Sec23p. Collectively, the present data suggest that interaction of the dibasic motif with Sar1 participates in early steps of selection of Golgi resident glycosyltransferases for transport in COPII vesicles.


1999 ◽  
Vol 47 (2) ◽  
pp. 129-137 ◽  
Author(s):  
Leland G. Dobbs ◽  
Robert F. Gonzalez ◽  
Lennell Allen ◽  
Deborah K. Froh

1992 ◽  
Vol 118 (5) ◽  
pp. 1003-1014 ◽  
Author(s):  
T V Kurzchalia ◽  
P Dupree ◽  
R G Parton ◽  
R Kellner ◽  
H Virta ◽  
...  

In simple epithelial cells, apical and basolateral proteins are sorted into separate vesicular carriers before delivery to the appropriate plasma membrane domains. To dissect the putative sorting machinery, we have solubilized Golgi-derived transport vesicles with the detergent CHAPS and shown that an apical marker, influenza haemagglutinin (HA), formed a large complex together with several integral membrane proteins. Remarkably, a similar set of CHAPS-insoluble proteins was found after solubilization of a total cellular membrane fraction. This allowed the cloning of a cDNA encoding one protein of this complex, VIP21 (Vesicular Integral-membrane Protein of 21 kD). The transiently expressed protein appeared on the Golgi-apparatus, the plasma membrane and vesicular structures. We propose that VIP21 is a component of the molecular machinery of vesicular transport.


1998 ◽  
Vol 142 (5) ◽  
pp. 1209-1222 ◽  
Author(s):  
Jacqueline Powers ◽  
Charles Barlowe

COPII-coated ER-derived transport vesicles from Saccharomyces cerevisiae contain a distinct set of membrane-bound polypeptides. One of these polypeptides, termed Erv14p (ER–vesicle protein of 14 kD), corresponds to an open reading frame on yeast chromosome VII that is predicted to encode an integral membrane protein and shares sequence identity with the Drosophila cornichon gene product. Experiments with an epitope-tagged version of Erv14p indicate that this protein localizes to the ER and is selectively packaged into COPII-coated vesicles. Haploid cells that lack Erv14p are viable but display a modest defect in bud site selection because a transmembrane secretory protein, Axl2p, is not efficiently delivered to the cell surface. Axl2p is required for selection of axial growth sites and normally localizes to nascent bud tips or the mother bud neck. In erv14Δ strains, Axl2p accumulates in the ER while other secretory proteins are transported at wild-type rates. We propose that Erv14p is required for the export of specific secretory cargo from the ER. The polarity defect of erv14Δ yeast cells is reminiscent of cornichon mutants, in which egg chambers fail to establish proper asymmetry during early stages of oogenesis. These results suggest an unforeseen conservation in mechanisms producing cell polarity shared between yeast and Drosophila.


Sign in / Sign up

Export Citation Format

Share Document