scholarly journals ADD66, a Gene Involved in the Endoplasmic Reticulum-associated Degradation of α-1-Antitrypsin-Z in Yeast, Facilitates Proteasome Activity and Assembly

2007 ◽  
Vol 18 (10) ◽  
pp. 3776-3787 ◽  
Author(s):  
Craig M. Scott ◽  
Kristina B. Kruse ◽  
Béla Z. Schmidt ◽  
David H. Perlmutter ◽  
Ardythe A. McCracken ◽  
...  

Antitrypsin deficiency is a primary cause of juvenile liver disease, and it arises from expression of the “Z” variant of the α-1 protease inhibitor (A1Pi). Whereas A1Pi is secreted from the liver, A1PiZ is retrotranslocated from the endoplasmic reticulum (ER) and degraded by the proteasome, an event that may offset liver damage. To better define the mechanism of A1PiZ degradation, a yeast expression system was developed previously, and a gene, ADD66, was identified that facilitates A1PiZ turnover. We report here that ADD66 encodes an ∼30-kDa soluble, cytosolic protein and that the chymotrypsin-like activity of the proteasome is reduced in add66Δ mutants. This reduction in activity may arise from the accumulation of 20S proteasome assembly intermediates or from qualitative differences in assembled proteasomes. Add66p also seems to be a proteasome substrate. Consistent with its role in ER-associated degradation (ERAD), synthetic interactions are observed between the genes encoding Add66p and Ire1p, a transducer of the unfolded protein response, and yeast deleted for both ADD66 and/or IRE1 accumulate polyubiquitinated proteins. These data identify Add66p as a proteasome assembly chaperone (PAC), and they provide the first link between PAC activity and ERAD.

2000 ◽  
Vol 113 (21) ◽  
pp. 3697-3702 ◽  
Author(s):  
F. Urano ◽  
A. Bertolotti ◽  
D. Ron

Genetic analysis of the cellular adaptation to malfolded proteins in the endoplasmic reticulum (the unfolded protein response - UPR) has revealed a novel signaling pathway initiated by activation of IRE1, an ER-resident protein kinase and endonuclease. In yeast, Ire1p activates gene expression by promoting a non-conventional splicing event that converts the mRNA encoding the Hac1p transcription factor from an inefficiently translated inactive mRNA to an actively translated one. Hac1p binds to the promoters of genes encoding chaperones and other targets of the UPR and activates them. Recently, mammalian IRE1 homologues have been identified and their response to ER stress is regulated by binding to the ER chaperone BiP. The mechanisms by which mammalian IRE1 activates gene expression have not been completely characterized and mammalian HAC1 homologues have not been identified. Surprisingly, mammalian IRE1s are able to activate both JUN N-terminal kinases and an alternative ER-stress signaling pathway mediated by the transcription factor ATF6. This indicates that the mammalian UPR is more complex than that found in yeast.


2011 ◽  
Vol 434 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Lei Wang ◽  
Li Zhu ◽  
Chih-chen Wang

In eukaryotes, disulfide bonds are formed in the endoplasmic reticulum, facilitated by the Ero1 (endoplasmic reticulum oxidoreductin 1) oxidase/PDI (protein disulfide-isomerase) system. Mammals have two ERO1 genes, encoding Ero1α and Ero1β proteins. Ero1β is constitutively expressed in professional secretory tissues and induced during the unfolded protein response. In the present work, we show that recombinant human Ero1β is twice as active as Ero1α in enzymatic assays. Ero1β oxidizes PDI more efficiently than other PDI family members and drives oxidative protein folding preferentially via the active site in the a′ domain of PDI. Our results reveal that Ero1β oxidase activity is regulated by long-range disulfide bonds and that Cys130 plays a critical role in feedback regulation. Compared with Ero1α, however, Ero1β is loosely regulated, consistent with its role as a more active oxidase when massive oxidative power is required.


Sign in / Sign up

Export Citation Format

Share Document