IRE1 and efferent signaling from the endoplasmic reticulum

2000 ◽  
Vol 113 (21) ◽  
pp. 3697-3702 ◽  
Author(s):  
F. Urano ◽  
A. Bertolotti ◽  
D. Ron

Genetic analysis of the cellular adaptation to malfolded proteins in the endoplasmic reticulum (the unfolded protein response - UPR) has revealed a novel signaling pathway initiated by activation of IRE1, an ER-resident protein kinase and endonuclease. In yeast, Ire1p activates gene expression by promoting a non-conventional splicing event that converts the mRNA encoding the Hac1p transcription factor from an inefficiently translated inactive mRNA to an actively translated one. Hac1p binds to the promoters of genes encoding chaperones and other targets of the UPR and activates them. Recently, mammalian IRE1 homologues have been identified and their response to ER stress is regulated by binding to the ER chaperone BiP. The mechanisms by which mammalian IRE1 activates gene expression have not been completely characterized and mammalian HAC1 homologues have not been identified. Surprisingly, mammalian IRE1s are able to activate both JUN N-terminal kinases and an alternative ER-stress signaling pathway mediated by the transcription factor ATF6. This indicates that the mammalian UPR is more complex than that found in yeast.

2018 ◽  
pp. MCB.00054-18 ◽  
Author(s):  
Eunice Domínguez-Martín ◽  
Laura Ongay-Larios ◽  
Laura Kawasaki ◽  
Olivier Vincent ◽  
Gerardo Coello ◽  
...  

The Unfolded Protein Response (UPR) is an adaptive pathway that restores cellular homeostasis after endoplasmic reticulum (ER) stress. The ER-resident kinase/ribonuclease Ire1 is the only UPR sensor conserved during evolution. Autophagy, a lysosomal degradative pathway, also contributes to the recovery of cell homeostasis after ER-stress but the interplay between these two pathways is still poorly understood. We describe the Dictyostelium discoideum ER-stress response and characterize its single bonafide Ire1 orthologue, IreA. We found that tunicamycin (TN) triggers a gene-expression reprogramming that increases the protein folding capacity of the ER and alleviates ER protein load. Further, IreA is required for cell-survival after TN-induced ER-stress and is responsible for nearly 40% of the transcriptional changes induced by TN. The response of Dictyostelium cells to ER-stress involves the combined activation of an IreA-dependent gene expression program and the autophagy pathway. These two pathways are independently activated in response to ER-stress but, interestingly, autophagy requires IreA at a later stage for proper autophagosome formation. We propose that unresolved ER-stress in cells lacking IreA causes structural alterations of the ER, leading to a late-stage blockade of autophagy clearance. This unexpected functional link may critically affect eukaryotic cell survival under ER-stress.


2016 ◽  
Vol 27 (9) ◽  
pp. 1536-1551 ◽  
Author(s):  
Michael E. Fusakio ◽  
Jeffrey A. Willy ◽  
Yongping Wang ◽  
Emily T. Mirek ◽  
Rana J. T. Al Baghdadi ◽  
...  

Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins—PERK (PEK/EIF2AK3), IRE1, and ATF6—is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.


2002 ◽  
Vol 366 (2) ◽  
pp. 585-594 ◽  
Author(s):  
Tetsuya OKADA ◽  
Hiderou YOSHIDA ◽  
Rieko AKAZAWA ◽  
Manabu NEGISHI ◽  
Kazutoshi MORI

In response to accumulation of unfolded proteins in the endoplasmic reticulum (ER), a homoeostatic response, termed the unfolded protein response (UPR), is activated in all eukaryotic cells. The UPR involves only transcriptional regulation in yeast, and approx. 6% of all yeast genes, encoding not only proteins to augment the folding capacity in the ER, but also proteins working at various stages of secretion, are induced by ER stress [Travers, Patil, Wodicka, Lockhart, Weissman and Walter (2000) Cell (Cambridge, Mass.) 101, 249–258]. In the present study, we conducted microarray analysis of HeLa cells, although our analysis covered only a small fraction of the human genome. A great majority of human ER stress-inducible genes (approx. 1% of 1800 genes examined) were classified into two groups. One group consisted of genes encoding ER-resident molecular chaperones and folding enzymes, and these genes were directly regulated by the ER-membrane-bound transcription factor activating transcription factor (ATF) 6. The ER-membrane-bound protein kinase double-stranded RNA-activated protein kinase-like ER kinase (PERK)-mediated signalling pathway appeared to be responsible for induction of the remaining genes, which are not involved in secretion, but may be important after cellular recovery from ER stress. In higher eukaryotes, the PERK-mediated translational-attenuation system is known to operate in concert with the transcriptional-induction system. Thus we propose that mammalian cells have evolved a strategy to cope with ER stress different from that of yeast cells.


1997 ◽  
Vol 8 (10) ◽  
pp. 1845-1862 ◽  
Author(s):  
Tetsushi Kawahara ◽  
Hideki Yanagi ◽  
Takashi Yura ◽  
Kazutoshi Mori

An intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, called the unfolded protein response (UPR), is activated when unfolded proteins are accumulated in the ER under a variety of stress conditions (“ER stress”). We and others recently identified Hac1p/Ern4p as a transcription factor responsible for the UPR inSaccharomyces cerevisiae. It was further reported that Hac1p (238 aa) is detected only in ER-stressed cells, and its expression is mediated by unconventional splicing ofHAC1 precursor mRNA. The splicing replaces the C-terminal portion of Hac1p; it was proposed that precursor mRNA is also translated but the putative product of 230 aa is rapidly degraded by the ubiquitin–proteasome pathway. We have identified and characterized the same regulated splicing and confirmed its essential features. Contrary to the above proposal, however, we find that the 238-aa product of mature mRNA and the 230-aa-type protein tested are highly unstable with little or no difference in stability. Furthermore, we demonstrate that the absence of Hac1p in unstressed cells is due to the lack of translation of precursor mRNA. We conclude that Hac1p is synthesized as the result of ER stress-induced mRNA splicing, leading to activation of the UPR.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paul G. Weightman Potter ◽  
Sam J. Washer ◽  
Aaron R. Jeffries ◽  
Janet E. Holley ◽  
Nick J. Gutowski ◽  
...  

Aims/hypothesisRecurrent hypoglycaemia (RH) is a major side-effect of intensive insulin therapy for people with diabetes. Changes in hypoglycaemia sensing by the brain contribute to the development of impaired counterregulatory responses to and awareness of hypoglycaemia. Little is known about the intrinsic changes in human astrocytes in response to acute and recurrent low glucose (RLG) exposure.MethodsHuman primary astrocytes (HPA) were exposed to zero, one, three or four bouts of low glucose (0.1 mmol/l) for three hours per day for four days to mimic RH. On the fourth day, DNA and RNA were collected. Differential gene expression and ontology analyses were performed using DESeq2 and GOseq, respectively. DNA methylation was assessed using the Infinium MethylationEPIC BeadChip platform.Results24 differentially expressed genes (DEGs) were detected (after correction for multiple comparisons). One bout of low glucose exposure had the largest effect on gene expression. Pathway analyses revealed that endoplasmic-reticulum (ER) stress-related genes such as HSPA5, XBP1, and MANF, involved in the unfolded protein response (UPR), were all significantly increased following low glucose (LG) exposure, which was diminished following RLG. There was little correlation between differentially methylated positions and changes in gene expression yet the number of bouts of LG exposure produced distinct methylation signatures.Conclusions/interpretationThese data suggest that exposure of human astrocytes to transient LG triggers activation of genes involved in the UPR linked to endoplasmic reticulum (ER) stress. Following RLG, the activation of UPR related genes was diminished, suggesting attenuated ER stress. This may be a consequence of a successful metabolic adaptation, as previously reported, that better preserves intracellular energy levels and a reduced necessity for the UPR.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Adrien Le Thomas ◽  
Elena Ferri ◽  
Scot Marsters ◽  
Jonathan M. Harnoss ◽  
David A. Lawrence ◽  
...  

AbstractInositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD). Paradoxically, in mammals RIDD seems to target only mRNAs with XBP1-like endomotifs, while in flies RIDD exhibits little sequence restriction. By comparing nascent and total IRE1α-controlled mRNAs in human cells, we identify not only canonical endomotif-containing RIDD substrates, but also targets without such motifs—degraded by a process we coin RIDDLE, for RIDD lacking endomotif. IRE1α displays two basic endoribonuclease modalities: highly specific, endomotif-directed cleavage, minimally requiring dimers; and more promiscuous, endomotif-independent processing, requiring phospho-oligomers. An oligomer-deficient IRE1α mutant fails to support RIDDLE in vitro and in cells. Our results advance current mechanistic understanding of the UPR.


Author(s):  
Felipe Cabral-Miranda ◽  
Claudio Hetz

AbstractThe conception that protein aggregates composed by misfolded proteins underlies the occurrence of several neurodegenerative diseases suggests that this phenomenon may have a common origin, ultimately driven by disruption of proteostasis control. The unfolded protein response (UPR) embodies a major element of the proteostasis network, which is engaged by endoplasmic reticulum (ER) stress. Chronic ER stress may operate as a possible mechanism of neurodegeneration, contributing to synaptic alterations, neuroinflammation and neuronal loss. In this review we discuss most recent findings relating ER stress and the development of distinct neurodegenerative diseases, and the possible strategies for disease intervention.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Ciara M Gallagher ◽  
Carolina Garri ◽  
Erica L Cain ◽  
Kenny Kean-Hooi Ang ◽  
Christopher G Wilson ◽  
...  

The membrane-bound transcription factor ATF6α plays a cytoprotective role in the unfolded protein response (UPR), required for cells to survive ER stress. Activation of ATF6α promotes cell survival in cancer models. We used cell-based screens to discover and develop Ceapins, a class of pyrazole amides, that block ATF6α signaling in response to ER stress. Ceapins sensitize cells to ER stress without impacting viability of unstressed cells. Ceapins are highly specific inhibitors of ATF6α signaling, not affecting signaling through the other branches of the UPR, or proteolytic processing of its close homolog ATF6β or SREBP (a cholesterol-regulated transcription factor), both activated by the same proteases. Ceapins are first-in-class inhibitors that can be used to explore both the mechanism of activation of ATF6α and its role in pathological settings. The discovery of Ceapins now enables pharmacological modulation all three UPR branches either singly or in combination.


mBio ◽  
2018 ◽  
Vol 9 (3) ◽  
Author(s):  
Sonam Grover ◽  
Tarina Sharma ◽  
Yadvir Singh ◽  
Sakshi Kohli ◽  
Manjunath P. ◽  
...  

ABSTRACT The genome of Mycobacterium tuberculosis , the causal organism of tuberculosis (TB), encodes a unique protein family known as the PE/PPE/PGRS family, present exclusively in the genus Mycobacterium and nowhere else in the living kingdom, with largely unexplored functions. We describe the functional significance of the PGRS domain of Rv0297, a member of this family. In silico analyses revealed the presence of intrinsically disordered stretches and putative endoplasmic reticulum (ER) localization signals in the PGRS domain of Rv0297 (Rv0297PGRS). The PGRS domain aids in ER localization, which was shown by infecting macrophage cells with M. tuberculosis and by overexpressing the protein by transfection in macrophage cells followed by activation of the unfolded protein response, as evident from increased expression of GRP78/GRP94 and CHOP/ATF4, leading to disruption of intracellular Ca 2+ homeostasis and increased nitric oxide (NO) and reactive oxygen species (ROS) production. The consequent activation of the effector caspase-8 resulted in apoptosis of macrophages, which was Toll-like receptor 4 (TLR4) dependent. Administration of recombinant Rv0297PGRS (rRv0297PGRS) also exhibited similar effects. These results implicate a hitherto-unknown role of the PGRS domain of the PE_PGRS protein family in ER stress-mediated cell death through TLR4. Since this protein is already known to be present at later stages of infection in human granulomas it points to the possibility of it being employed by M. tuberculosis for its dissemination via an apoptotic mechanism. IMPORTANCE Apoptosis is generally thought to be a defense mechanism in protecting the host against Mycobacterium tuberculosis in early stages of infection. However, apoptosis during later stages in lung granulomas may favor the bacterium in disseminating the disease. ER stress has been found to induce apoptosis in TB granulomas, in zones where apoptotic macrophages accumulate in mice and humans. In this study, we report ER stress-mediated apoptosis of host cells by the Rv0297-encoded PE_PGRS5 protein of M. tuberculosis exceptionally present in the pathogenic Mycobacterium genus. The PGRS domain of Rv0297 aids the protein in localizing to the ER and induces the unfolded protein response followed by apoptosis of macrophages. The effect of the Rv0297PGRS domain was found to be TLR4 dependent. This study presents novel insights on the strategies employed by M. tuberculosis to disseminate the disease.


Sign in / Sign up

Export Citation Format

Share Document