The endoplasmic reticulum sulfhydryl oxidase Ero1β drives efficient oxidative protein folding with loose regulation

2011 ◽  
Vol 434 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Lei Wang ◽  
Li Zhu ◽  
Chih-chen Wang

In eukaryotes, disulfide bonds are formed in the endoplasmic reticulum, facilitated by the Ero1 (endoplasmic reticulum oxidoreductin 1) oxidase/PDI (protein disulfide-isomerase) system. Mammals have two ERO1 genes, encoding Ero1α and Ero1β proteins. Ero1β is constitutively expressed in professional secretory tissues and induced during the unfolded protein response. In the present work, we show that recombinant human Ero1β is twice as active as Ero1α in enzymatic assays. Ero1β oxidizes PDI more efficiently than other PDI family members and drives oxidative protein folding preferentially via the active site in the a′ domain of PDI. Our results reveal that Ero1β oxidase activity is regulated by long-range disulfide bonds and that Cys130 plays a critical role in feedback regulation. Compared with Ero1α, however, Ero1β is loosely regulated, consistent with its role as a more active oxidase when massive oxidative power is required.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Nicholas R Guydosh ◽  
Philipp Kimmig ◽  
Peter Walter ◽  
Rachel Green

The unfolded protein response (UPR) monitors and adjusts the protein folding capacity of the endoplasmic reticulum (ER). In S. pombe, the ER membrane-resident kinase/endoribonuclease Ire1 utilizes a mechanism of selective degradation of ER-bound mRNAs (RIDD) to maintain homeostasis. We used a genetic screen to identify factors critical to the Ire1-mediated UPR and found several proteins, Dom34, Hbs1 and Ski complex subunits, previously implicated in ribosome rescue and mRNA no-go-decay (NGD). Ribosome profiling in ER-stressed cells lacking these factors revealed that Ire1-mediated cleavage of ER-associated mRNAs results in ribosome stalling and mRNA degradation. Stalled ribosomes iteratively served as a ruler to template precise, regularly spaced upstream mRNA cleavage events. This clear signature uncovered hundreds of novel target mRNAs. Our results reveal that the UPR in S. pombe executes RIDD in an intricate interplay between Ire1, translation, and the NGD pathway, and establish a critical role for NGD in maintaining ER homeostasis.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Sana Basseri ◽  
Richard C. Austin

The endoplasmic reticulum (ER) plays a crucial role in protein folding, assembly, and secretion. Disruption of ER homeostasis may lead to accumulation of misfolded or unfolded proteins in the ER lumen, a condition referred to as ER stress. In response to ER stress, a signal transduction pathway known as the unfolded protein response (UPR) is activated. UPR activation allows the cell to cope with an increased protein-folding demand on the ER. Recent studies have shown that ER stress/UPR activation plays a critical role in lipid metabolism and homeostasis. ER-stress-dependent dysregulation of lipid metabolism may lead to dyslipidemia, insulin resistance, cardiovascular disease, type 2 diabetes, and obesity. In this paper, we examine recent findings illustrating the important role ER stress/UPR signalling pathways play in regulation of lipid metabolism, and how they may lead to dysregulation of lipid homeostasis.


2017 ◽  
Vol 312 (3) ◽  
pp. H355-H367 ◽  
Author(s):  
M. L. Battson ◽  
D. M. Lee ◽  
C. L. Gentile

The vascular endothelium plays a critical role in cardiovascular homeostasis, and thus identifying the underlying causes of endothelial dysfunction has important clinical implications. In this regard, the endoplasmic reticulum (ER) has recently emerged as an important regulator of metabolic processes. Dysfunction within the ER, broadly termed ER stress, evokes the unfolded protein response (UPR), an adaptive pathway that aims to restore ER homeostasis. Although the UPR is the first line of defense against ER stress, chronic activation of the UPR leads to cell dysfunction and death and has recently been implicated in the pathogenesis of endothelial dysfunction. Numerous risk factors for endothelial dysfunction can induce ER stress, which may in turn disrupt endothelial function via direct effects on endothelium-derived vasoactive substances or by activating other pathogenic cellular networks such as inflammation and oxidative stress. This review summarizes the available data linking ER stress to endothelial dysfunction.


2007 ◽  
Vol 18 (10) ◽  
pp. 3776-3787 ◽  
Author(s):  
Craig M. Scott ◽  
Kristina B. Kruse ◽  
Béla Z. Schmidt ◽  
David H. Perlmutter ◽  
Ardythe A. McCracken ◽  
...  

Antitrypsin deficiency is a primary cause of juvenile liver disease, and it arises from expression of the “Z” variant of the α-1 protease inhibitor (A1Pi). Whereas A1Pi is secreted from the liver, A1PiZ is retrotranslocated from the endoplasmic reticulum (ER) and degraded by the proteasome, an event that may offset liver damage. To better define the mechanism of A1PiZ degradation, a yeast expression system was developed previously, and a gene, ADD66, was identified that facilitates A1PiZ turnover. We report here that ADD66 encodes an ∼30-kDa soluble, cytosolic protein and that the chymotrypsin-like activity of the proteasome is reduced in add66Δ mutants. This reduction in activity may arise from the accumulation of 20S proteasome assembly intermediates or from qualitative differences in assembled proteasomes. Add66p also seems to be a proteasome substrate. Consistent with its role in ER-associated degradation (ERAD), synthetic interactions are observed between the genes encoding Add66p and Ire1p, a transducer of the unfolded protein response, and yeast deleted for both ADD66 and/or IRE1 accumulate polyubiquitinated proteins. These data identify Add66p as a proteasome assembly chaperone (PAC), and they provide the first link between PAC activity and ERAD.


2012 ◽  
Vol 52 (9) ◽  
pp. 2000-2012 ◽  
Author(s):  
Marizela Delic ◽  
Corinna Rebnegger ◽  
Franziska Wanka ◽  
Verena Puxbaum ◽  
Christina Haberhauer-Troyer ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 333 ◽  
Author(s):  
Alberto M. Martelli ◽  
Francesca Paganelli ◽  
Francesca Chiarini ◽  
Camilla Evangelisti ◽  
James A. McCubrey

The unfolded protein response (UPR) is an evolutionarily conserved adaptive response triggered by the stress of the endoplasmic reticulum (ER) due, among other causes, to altered cell protein homeostasis (proteostasis). UPR is mediated by three main sensors, protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6α (ATF6α), and inositol-requiring enzyme-1α (IRE1α). Given that proteostasis is frequently disregulated in cancer, UPR is emerging as a critical signaling network in controlling the survival, selection, and adaptation of a variety of neoplasias, including breast cancer, prostate cancer, colorectal cancer, and glioblastoma. Indeed, cancer cells can escape from the apoptotic pathways elicited by ER stress by switching UPR into a prosurvival mechanism instead of cell death. Although most of the studies on UPR focused on solid tumors, this intricate network plays a critical role in hematological malignancies, and especially in multiple myeloma (MM), where treatment with proteasome inhibitors induce the accumulation of unfolded proteins that severely perturb proteostasis, thereby leading to ER stress, and, eventually, to apoptosis. However, UPR is emerging as a key player also in acute leukemias, where recent evidence points to the likelihood that targeting UPR-driven prosurvival pathways could represent a novel therapeutic strategy. In this review, we focus on the oncogene-specific regulation of individual UPR signaling arms, and we provide an updated outline of the genetic, biochemical, and preclinical therapeutic findings that support UPR as a relevant, novel target in acute leukemias.


Sign in / Sign up

Export Citation Format

Share Document